		Reg. No. :										
	Question Paper Code: 96901											
B.E./B.Tech. DEGREE EXAMINATION, MAY 2022												
Sixth Semester												
Chemical Engineering												
19UCH601 – CHEMICAL REACTION ENGINEERING II												
(Regulations 2019)												
Dura	tion: Three hours						Ma	axim	um:	100	Mark	S
		PART A - (10	x 1 =	10 Mar	ks)							
1.	Pores with diameter less	than $2nm (20 A^{O})$) are c	alled							CO	1 - R
	(a) mesopores	(b) micropores	(c) macro	opore	es		(d) 1	millij	oore		
2.	Adsorption data are freq	uently reported by	y								CO	1 - R
	(a) Adsorption isotherm	Adsorption isotherms (b) Catalyst deactivation										
	(c) Sigmoidal curve		(d) none of the above									
3.	When a catalyst increase the rate constant	es the rate of a che	emical	reaction	n ,the	e valı	ie of			C	201-	R
	(a) Remains constant	(b)increases	(c) d	ecreases	5			(d) bec	ome	infir	nite
4.	For a solid –catalyzed to offers negligible resistant of the reaction is	first order reaction	n A reactio	\rightarrow P, the	e por thie	e dif le mo	fusic odulı	on us			CO1	- U
	(a) Greater than 5	(b) Greater th	an 1	(c) G	reate	r tha	n 10	(d	l) Le	ss th	an 0.	5
5.	Find the time required for 98% conversion of a particle for film CO2- App diffusion controls with molar density 0.0198 g/mol with a radius of 0.5 cm with reacting moles of 0.25 moles of B whose mass transfer coefficient is 10 cm/s with $C_{Ag} = 1.396 * 10^{-5} \text{mol/cm}^3$.									Арр		
	(a) 92.663 s	(b) 100 s		(c)) 55.:	5 s		(d) 76.	8 s		
6.	Find the time required for chemical reaction con mol/cm^3 , R=0.5 cm, b=	or complete burning trols with the f 1, k=20 cm/s and	ng of g Collowi C _{Ag} =	graphite ng dat 8.31*1(parti a p _I)^-7.	icle v $_{3}=0$	vhen .183			C	02-	Арр
	(a) 5505.4 sec (b) 4000.6sec	(c) 1	00.8 sec	: (d) or	e of	the a	abov	e		

7.	SO ₂ can be absorbed in absorbers usingas solvent.								
	(a)	(a) Dimethyl aniline (b) NaOH (c) Na_2CO_3							
8.	CO ₂	can be absorbed in absorbers usingsolvent.	CO1- U						
	(a)	Ethanol amines (b) NaOH H_2SO_4 (c) Copper Ammonium salts	d) H ₂ SO ₄						
9.	The	molecular weight of enzymes will be	CO1- U						
	(a)	> than 1000 (b) 2 (c) 10 (d) 20							
10.	Whi deac	ch of the following reactor arrangements causes fast etivation?	CO1- U						
	(a) N	(a) Mixed flow for fluid (b) plug flow for fluid							
	(c) f	(c) fluidized bed reactor (d) batch for fluid and solid							
		PART – B (5x 2= 10 Marks)							
11.	Wha	at are heterogeneous reactions?	CO1- U						
12.	Draw the plot of effectiveness factor versus Thiele modulus and suggest the CO1-1 information inferred.								
13.	Wha reac	What are the three contacting patterns used for gas-solid non catalytic CO1-U reactions?							
14.	Wha	CO1- R							
15.	Wha	CO1- U							
		PART C - (5 x 16 = 80 Marks)							
16.	(a)	Explain in detail about the sol gel method in preparation of CO1-U catalyst.	U (16)						
	(b)	Or Discuss in detail about the molecular (or) non dissociated CO1-U adsorption.	U (16)						
17.	(a)	Derive the expressions for internal diffusion that takes place in a CO1 - single cylindrical pore with first order reactions and discuss about Thiele modulus and effectiveness factor Or	J (16)						
	(b)	Calculate the amount of catalyst needed in a packed bed reactor to CO2 - A achieve 25 % conversion of 1000 m ³ /hr of pure gaseous A ($C_{AO} = 1000 \text{ mol/m}^3$) for:	App (16)						
		A- 7K - Γ_{A} = 50 $C_{\text{A}}/(1+0.02 C_{\text{A}})$							

18. (a) Find the expression for fraction of B unconverted for mixed flow CO1-U (16) of a size mixture of particles of unchanging size with uniform gas composition

Or

- (b) Discuss in detail on shrinking core model and progressive CO1-U (16) conversion model and derive expression for diffusion through the layers.
- 19. (a) Discuss in detail the design considerations of various types of gas- CO1 -U (16) liquid reactors.

Or

- (b) Explain the mechanism and operation involved in a countercurrent CO1 -U (16) flow (plug flow G +Plug flow L) contacting patterns for G/L contactors.
- 20. (a) Derive expressions for concentration-time behavior of the CO1-U (16) integrated M-M equation in a mixed flow fermentor.

(b) Discuss about the inhibition of enzyme reactions by a foreign CO1-U (16) substance with the kinetic expression for competitive and non competitive inhibition.

Or