		Reg. No.	:			
				-		
		Question	Paper Code: 94906			
	Η	B.E./B.Tech. DEGRE	E EXAMINATION, MAY	2022		
		Foι	urth Semester			
		Chem	ical Engineering			
		19UCH406 -	- MASS TRANSFER I			
		(Reg	gulations 2019)			
Dur	ation: Three hours			Maximum:	100 Marks	
		PART A -	(10 x 1 = 10 Marks)			
1.	The binary diffus	ivity in gas at atmosp	heric conditions is of the o	rder of	CO1- R	
	(a) 10-1 cm2 /sec	(b) 10-5 cm2 /s	sec (c) 105 cm2 /sec	(d) 10	-7 cm2 /sec	
2.	The Knudsen diff	fusivity is proportiona	al to		CO1- R	
	(a) T	(b) T33/2	(c) T 1/2	(d) T2	12	
3.	Mass Transfer co to film theory as	efficient (K) and dif	fusivity (D) are related acc	ording	CO2- R	
	(a) K∞ D	(b) K $\infty \sqrt{D}$	(c) $K \infty D^{1.5}$	(d) K x	$\circ D^2$	
4.	The Chilton – col	lburnanaloy for mass	transfer states that		CO2- R	
	(a) $N_{St} N_{Sc}^{1/3} = f/8$	8 (b) $N_{St} N_{Sc}^{2/3}$	$^{3} = f/2$ (c) $N_{St} N_{Sc}^{3/2} = f/2$	2 (d) N	$V_{St} N_{Sc}^{2/3} = f/8$	
5.	By differencing	the temperature, heat	added or removed is		CO3- R	
	(a) latent heat (b) sensible heat (c) heat of vaporization (d) none of the mentioned					
6.	In an operation, the enthalpy is similar throughout the initial and final CO3- R condition such operation is					
	(a) Adiabatic	(b) non Adia	abatic (c)Isothermal	(d) Non	Isothermal	
7.	Why direct heating	ng by hot air cannot b	e done in some cases?		CO4- R	
	(a) the material can degrade (b) high temperature not require			ired		
	(c) low temperature not required (d) Conduction gives best results					
8.	What is the drum dryer called if it is open to the atmosphere? CO4- I					
	(a) Open dryer	(b) Box dryer	(c) Trough dryer	(d) Trend	ch dryer	

9.	Which of the following is not a common method used for purification?					C	CO5- R			
	(a) A	cetone	(b) Phospho	ric acid	(c) Ethy	ylene	(d) Ta	(d) Tartaric acid		
10.	Solu	Soluble impurities from solution during crystallization are removed by				C	CO5- U			
	(a) D	rying (b) Filtration		(c) Hea	ting	(d) C	ooling		
			Ι	PART – B	(5x 2= 10	Marks)				
11.	Show	that DAB =	= DBA					C	CO1- U	
12.	State inter phase mass transfer CO2- R						CO2- R			
13.	Define Humidity or Absolute humidity CO3- U						CO3- U			
14.	Write the Various drying equipments and their applications CO4- U						CO4- U			
15.	What are the merits of crystals? CO						CO5- U			
			P	ART C - (5	$5 \ge 16 = 8$	0 Marks)				
16.	(a)	Derive an gas film.	expression for	r steady sta	te moleci	ular diffus	ion through a	CO2 -App	(16)	
	(b)	Derive an	expression	for steady	: v state r	nolecular	diffusion in	CO2 -App	(16)	
		liquids.	I	-	,			11		
17.	(a)	Explain th design of c	e design of co cooling towers	ooling tow 5.	ers and th	ne steps in	volved in the	CO2 -App	(16)	
	(b)	In a wette	d wall columr	o carbon di	oxide is h	eing abso	rbed from air	CO2 - App	(16)	
		by water the coefficient fraction).C carbon dic determine	flowing at 2 a t k_y has been of Calculate the r by ide at the in k_y and $k_{g.}$	atm pressu estimated t rate of absolute terface is (or be 6.78 orption if 0.2 atm at	5° C. The 18 X10 ⁻⁵ km ³ the partiand the air	mass transfer $ol/(m^2.s.mole$ al pressure of is pure. Also	CO2 Tipp	(10)	

18. (a) In an experimental study of absorption of ammonia by water in a CO2 -App (16) wetted wall column, the overall gas phase mass transfer coefficient, K_G was estimated as 2.72×10^{-4} kmol/m²s.atm. At one point in the column the gas contained 10 mol% ammonia and the liquid phase concentration was 6.42 x 10^{-2} kmol NH₃/m³ of solution. Temperature is 293K and the total pressure is 1 atm. 85% of the resistance to mass transfer lies in gas phase. If Henry's law constant is 9.35 x 10^{-3} atm.m³/kmol, calculate the individual film coefficient and the interfacial composition.

Or

(b) Explain with a neat sketch the construction and operation of CO1-U (16) induced draft cooling tower and its significance in chemical processes.

19.	(a)	Explain Drying rate and time calculations for drying.	CO2 -App	(16)
		Or		
	(b)	Explain about rotary drier with neat sketch.	CO2 -App	(16)
20.	(a)	Explain about crystal growth in crystallizers.	CO2 -App	(16)
		Or		
	(b)	Write about the Design calculations involving of material and	CO2 -App	(16)

energy balances.