A		Reg. No. :								
		Question Pap	er Code: 9402	4						
	B.E./B.Tech. DEGREE EXAMINATION, MAY 2022									
	Fourth Semester									
	Bio Medical Engineering									
	19UMA424 - Probability and Inferential Statistics									
			Bio Technology)							
			ions 2019)							
Dur	ation: Three hours	(Rogulat	10115 2017)	Maxim	um: 100 Marks					
Dui	ation. Three hours	A marrian A I	I Quastiana	Iviaxiiii						
			L Questions							
			x 1 = 10 Marks)							
1.	Probability of an impo		() 0		CO6-R					
2	(a) 1	(b)10	(c)0		$(d) \infty$					
2.	Probability of sure eve		(a)		CO6-R					
3.	(a) 0 If V and V are independent	(b) 1 ndant random variabl	(c) 2		(d)10 CO6-U					
5.	If X and Y are indepe (a) $f(x,y) = f(x) \cdot f(y)$			(d) None	of the above					
4.	The marginal density		(\mathbf{y}) $(\mathbf{c})\mathbf{I}(\mathbf{x},\mathbf{y})$ 0	(u) None	CO6-R					
	(a) f(y)	(b) f(x,y)	(c) $f(x)$		(d) f (x/y)					
5.	If the Random Proce	ss $\{X(t)\}$ with mean	has Auto correl	ation function						
	$R(\tau) = 16 + 9e^{- \tau }$ Then		•	(L)	0					
6.	(a) 16 Autocorrelation funct	(b)25	(c) 6	(d)	CO6-R					
0.	(a) 0	(b)1 (b)1	- (c) -1		(d) ∞					
7.	The system is said to				CO6-R					
	(a) $\int_{-\infty}^{\infty} h(t) dt < \infty$		$(\mathbf{c})\int_{0}^{\infty}h(t) dt$	> 0 (d)						
8.	If $S_{XX}(\omega)$ and $S_{YY}(\omega)$ and ω) is the transfer function	the input and outp			H(CO6-R					
	(a) $S_{XX}(\tau) = H(\omega) ^2 S_{YY}(\tau)$	ω)	(b) $S_{XY}(\tau) = H $	$\left(\omega\right)^{2}S_{xx}\left(\omega\right)$						
	$(\mathbf{c}) S_{yy}(\omega) = \left H(\omega) \right ^2 S_{xx}(\omega)$		(d) None of	1						
	$(\mathbf{U}) \mathbf{S}_{YY}(\boldsymbol{\omega}) = \mathbf{H}(\boldsymbol{\omega}) \mathbf{S}_{XX}(\mathbf{\omega})$	ω)								

9.	Large sample size is				CO6-U		
	(a) 30	(b) >30	(c)<30	(d) None of the	ne above		
10.	The degrees of freedom	for Binomial distributi	on is		CO6-U		
	(a) $(n - 1)(n - 2)$	(b) n -2	(c) $(n-1)(n-3)$	(d)	n -1		
		PART – B (5 x 2=	= 10Marks)				
11.	A Continuous random v	variable with density fur	nction is given by		CO1-App		
	$f(x) = 6x(1-x), 0 \le x \le 1$ Check the above is PDF or not.						
12.	The joint probat $P(x, y) = kxy$ $x = 1,2,3;$	bility mass func y = 1,2,3 Determine the y		Y) is	CO2-App		
13.	Prove that $ R_{xx}(\tau) \le R_{xx}(0)$ CO3-U						
14.	Calculate the value of the system transfer function, if the input of the system CO4-U with impulse response $h(t) = e^{-3t} U(t)$.						
15.	Give two types of errors in testing a statistical hypothesis CO2-U						
	PART – C (5 x 16= 80Marks)						
16.	(a) A Random Variab	le X has the following	probability distrib	ution CO1-A	App (16)		

X=x	0	1	2	3	4	5	6	7
P(X=x)	0	а	2a	2a	3a	a ²	$2a^2$	$7a^2+a$

Find

(i) 'a' (ii) P(X < 6), $P(X \ge 6) \& P(1.5 < X < 6.5 / X > 5)$ (iii) If $P(X \le a) > \frac{1}{2}$, Find the minimum value of 'a' (iv) Distribution function of x Or (b) (i) If $f(x) = \begin{cases} \frac{k}{1+x^2}, -\infty < x < \infty \\ 0, elsewhere \end{cases}$ is the Probability Density Function CO1- App (8)

of a Random variable X , (i) Find K (ii) distribution function of F(x)

(ii) State and Prove the memory less property for an Exponential CO1- App (8) Property.

17. (a) If the joint probability density function of X and Y is given by CO2-App (8) $f(x, y) = kxye^{-(x^2+y^2)}, x > 0, y > 0$ Find the value of k and Prove also that X and Y are independent If the joint probability density function of X&Y is given by CO2-App (8) $f(x,y) = e^{-(x+y)}, x > 0, y > 0$ Are X & Y independent.

Or

(b) (i) If X and Y are two random variables having joint probability CO2 -App (8) mass function $f(x, y) = \frac{(2x + y)}{27}$, x= 0, 1, 2 and y = 0, 1, 2 find the marginal distribution of X and Y

(ii) Obtain the Correlation coefficient for the following heights (in CO2 -App (8) inches) of fathers X and their sons Y.

X	65	66	67	67	68	60	70	72
Y	67	68	65	68	72	72	69	71

18. (a) (i) If the auto correlation function of the random binary CO3-U (8) transmission is given by $R_{XX}(\tau) = \begin{cases} 1 - \frac{|\tau|}{T} & ; |\tau| \le T \\ 0 & ; |\tau| \ge T \end{cases}$ Find the Power

spectral density function

(ii) A stationary process has an autocorrelation function given by CO3-App (8) $R(\tau) = 25 + \frac{4}{1+6\tau^2}$ Find the Mean and Variance

Or

(b) (i) If the Power spectral density of a WSS processes is given by CO3-App (8) $\mathbf{S}(\boldsymbol{\omega}) = \begin{cases} \frac{\mathbf{b}}{\mathbf{a}} (\mathbf{a} - |\boldsymbol{\omega}|) & ; & |\boldsymbol{\omega}| \le \mathbf{a} \\ \mathbf{0} & ; & |\boldsymbol{\omega}| > \mathbf{a} \end{cases}$

Find the auto correlation function of the Process.

(ii) Find power spectral densities of the following auto correlation CO3-App (8) function $R(\tau) = e^{\frac{-\alpha^2 \tau^2}{2}}$

19. (a) A random process X (t) having the autocorrelation function CO4-App (16) $R_{xx} (\tau) = P e^{-\alpha |\tau|}$ Where b is a constant is applied to the input of the system with impulse responseh (t) = $e^{-bt}U(t)$ where b is a constant. Find the autocorrelation of the output Y (t).

3

(b) If X (t) is a WSS process and if

$$Y(t) = \int_{-\infty}^{\infty} h(u) X(t - u) du \text{ then}$$

(i).R_{XY}(τ) = R_{XX}(τ) * h(τ) (ii).R_{YY}(τ) = R_{XY}(τ) * h(- τ)
(iii).S_{XY}(ω) = S_{XX}(ω) * H(ω) (iv).S_{YY}(ω) = S_{XX}(ω) * $|H(\omega)|^2$

20. (a) (i) Two horses A and B were tested according to time (in seconds) CO5-Ana (8) to run on a particular track with the following results:

Horse A	28	30	32	33	33	29	34
Horse B	29	30	30	24	27	29	

Test whether horse A is running faster than B at 5% level.

(ii) The following data are collected on two characters.	CO5-Ana	(8)
--	---------	-----

	Skilled	Non Skilled
Male	40	20
Female	10	30

Using chi-square test to find is there any relation between skilled and Non Skilled

Or

(b) (i) The theory predicts the population of beans in the four groups CO5- Ana (8) A, B, C and D should be 9:3:3:1. In an experiment among 1600 beans, the numbers in the four groups were 882, 313, 287 and 118. Does the experimental result support the theory?

(ii) Two random samples gave the following results:	CO5- Ana	(8)
---	----------	-----

Samples	Size	Sample Mean	Sum of the squares of deviation from the mean
1	10	15	90
2	12	14	108

Examine whether the samples come from the same normal population