		Reg. No. :					
		Question Paper	r Code: 520()4			
	B.E	. / B.Tech. DEGREE EX	XAMINATION,	MAY	2022		
		Second S	Semester				
		Electrical and Elect	ronics Engineer	ring			
		15UPH204 – SOLIE	O STATE PHYS	SICS			
		(Common to EIE and B	iomedical Engin	neering	g)		
		(Regulati	on 2015)				
I	Duration: Three hour	S			Maxim	um: 100	Marks
		Answer AL	L Questions				
		PART A - (10 x	x 1 = 10 Marks)				
1. According to ohm's law, the relation between electric field E, conductivity σ and current density J is given as						COI	
	(a) $J = \sigma / E$	(b) $J = \sigma E$	(c) $J = \sigma E^2$			(d) $J = E$	Ε/σ
2.	Mobility of electro	ns is defined as					CO1
(a) flow of electrons per unit electric field							
	(a) flow of electron	s per unit electric field					
		s per unit electric field n drift velocity per unit e	lectric field				
		n drift velocity per unit e	lectric field				
	(b) average electron(c) inverse of cond	n drift velocity per unit e					
3.	(b) average electron(c) inverse of cond	n drift velocity per unit e luctivity lrift velocity and electric					CO2
3.	(b) average electron(c) inverse of cond(d) the product of d	n drift velocity per unit e luctivity lrift velocity and electric all voltage is					CO2
3.	 (b) average electron (c) inverse of cond (d) the product of d The direction of Ha (a) parallel to appli 	n drift velocity per unit e luctivity lrift velocity and electric all voltage is	field				CO2
3.	 (b) average electron (c) inverse of cond (d) the product of d The direction of Ha (a) parallel to appli (b) perpendicular to 	n drift velocity per unit e luctivity lrift velocity and electric all voltage is ed electric field	field only				CO2
3.	 (b) average electron (c) inverse of cond (d) the product of d The direction of Ha (a) parallel to appli (b) perpendicular to (c) perpendicular to 	n drift velocity per unit e luctivity lrift velocity and electric all voltage is ed electric field o applied magnetic field	field only lly	1			CO2
3. 4.	 (b) average electron (c) inverse of cond (d) the product of d The direction of Ha (a) parallel to appli (b) perpendicular to (c) perpendicular to 	n drift velocity per unit e luctivity lrift velocity and electric all voltage is ed electric field o applied magnetic field on o applied electric field on o both applied electric an	field only lly	đ			CO2 CO2
	 (b) average electron (c) inverse of cond (d) the product of d The direction of Ha (a) parallel to appli (b) perpendicular to (c) perpendicular to (d) perpendicular to 	n drift velocity per unit e luctivity lrift velocity and electric all voltage is ed electric field o applied magnetic field on o applied electric field on o both applied electric an	field only lly		ns		

5.	Transformer cores are made of materials having					CO3-R
	(a) low	v hysteresis loss	steresis loss (b) high hysteresis loss			
	(c) low	v permeability		(d) low specific resistance	e	
6.	Meissr	issner effect is strictly followed by				CO3-R
	(a) Fe	rromagnetic mater	rial	(b) paramagnetic material	1	
	(c) con	conducting material (d) superconducting material			terial	
7.	Orient	tational polarizatio	on			CO4-R
	(a) increases with temperature					
	(b) dec	creases with tempe	erature			
	(c) independent of temperature					
	(d) firs	st increases and the	en decreases with temp	perature		
8.	Ceramic materials are					CO4-R
	(a) har	ď	(b) brittle	(c) both (a) and (b)	(d) ductile	
9.	Nano i	ndicates				CO5-R
	(a) 10 ⁻	⁻¹⁵ m	(b) 10 ⁻¹² m	(c) 10 ⁻⁶ m	(d) 10 ⁻⁹ m	
10.		one of the follo article?	wing is a top down	process of synthesizing		CO5-R
	(a) ball milling method		(b) Sol – gel method			
	(c) Colloidal method (d) Electrodeposition method				hod	
11	PART - B (5 x 2= 10 Marks)					
11.	State Wiedemann Franz law.					CO1-R
12.	Mention any two applications of Hall effect. What are ferrites?				CO2-R	
13.			·1 ·1·/			CO3-R
14.		e electrical suscept	-			CO4-R
15.	Give a	ny two properties		16 001(1.)		CO5-R
16	$\left(\right)$	01.4	PART - C (5 x)	<i>,</i>	CO1 4	(1 c)
16.	(a)	the basis of class electrical conduc	sion for electrical condical free electron theoretivity of a metal with the ty of electrons 6×10	relaxation time 10 ⁻¹⁴	CO1-App	(16)

		Or		
	(b)	Calculate carrier concentration in metals by deriving an expression for density of energy states in metals.	CO1-App	(16)
17.	(a)	(i) Distinguish between direct and indirect band gap semiconductor.	CO2-U	(8)
		(ii) What are the differences between intrinsic and extrinsic semiconductors?	CO2-U	(8)
		Or		
	(b)	(i) Obtain the expression of Hall coefficient in terms of current density and electronic charge by defining Hall effect.	CO2-U	(8)
		(ii) How will you identify whether the given semiconductor is a p-type or n-type semiconductor?	CO2-U	(8)
18.	(a)		CO3-U	(16)
		ferromagnetic magnetic materials. Or		
	(b)	(i) Distinguish between Type I and Type II super conductors.	CO3-U	(8)
		(ii) Distinguish between hard and soft magnetic materials.	CO3-U	(8)
19.	(a)	Explain the electronic, ionic, orientational and space charge polarization in dielectrics.	CO4-U	(16)
	(b)	Obtain an expression for the internal field experienced by an atom in a one dimensional array of atoms subjected to an external field and deduce Clausius – Mosotti equation. Using the above Clausius Mosotti equation , calculate the dielectric constant of the material for a solid elemental dielectric with density 3×10^{28} atoms / m ³ having electronic polarisability 2×10^{-40} Fm ² .	CO4-U	(16)
20.	(a)	Explain any one method of top down approach of synthesizing nanomaterial in detail. Or	CO5-U	(16)
	(b)	.Explain the properties and applications of nano materials.	CO5-U	(16)
	~ /			