
Α	Reg. No. :									
Question Paper Code: 94B04										
B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022										
	Fourth S	Semest	er							
	Biomedical	Engine	ering							
	19UBM404- SIGNA	LS AN	D SY	STE	MS					
	(Regulat	ion 201	9)							
Duration: Three hours Maxim				axim	um: 100 Marks					
	Answer AL	L Ques	stions							
	PART A - (10	x 2 = 2	0 Mar	ks)						
1. Determine the even and odd parts of a complex exponential signal.					CC	D2-App				
2. Check whether the following signal is periodic or not. If periodic, determine the fundamental period $x(t)=3cost+4cos(t/2)$,	CC)2-App		
3. State and prove the Parseval's theorem in Fourier series.							C	01 - U		
4. Write the Drichlet's conditions for existence of Fourier series.							C	01 - U		
5. Derive the L.T. of the signal $u(t)^* u(t-1)$ using the convolution property.							CC	03-App		
6. State the initial and final value theorem of the Laplace transform.							C	CO1-R		
7. State sampling Theorem.							CO1-R			
8. Determine the convolution sum of two sequences $x(n) = \{3, 2, 1, 2\}$ and					CC	05-App				
$h(n) = \{1, 2, 1, 2\}$										
9. Define ROC. Illustrate the Z-transform pair.							C	01-R		
10. Find the unilateral z-transform of $x(n) = \cos(\omega_o n)$.							CO4-App			
	PART - C (3)	5 x 16=	80 M	arks)					

11. (a) Describe the properties of CT and DT systems in detail with neat CO1- $\rm U$ (8) sketch.

- (b) Check all the system properties for the given (i) y(n) = x(n+1) - x(n-1)(ii) $\frac{dy(t)}{dt} + 5ty(t) = x(t)$ (8)
- 12. (a) Obtain the trigonometric Fourier series for the half wave rectified CO3- App (16) Cosine function.

Or

(b) Find the trigonometric Fourier series for the periodic signal x(t) CO3- App (16) shown in figure.

- 13. (a) An LTI system is defined by differential equation CO3- App (16) $\frac{d^2 y(t)}{dt^2} - 4 \frac{dy(t)}{dt} + 5 y(t) = 5 x(t)$. Find the response of the system y(t) using L.T. for an input x(t)=u(t), if the initial conditions are y(0)=1; y'(0)=2.Or
 - (b) Obtain the convolution of the given two signals using the CO5-Ana (16) convolution property of the Laplace transform and evaluate the results also with the conventional method of convolution. $x(t) = e^{-3t} u(t)$ and $y(t) = e^{-2t} u(t)$
- 14. (a) A Causal system is represented by the following difference CO4- App (16) equation $y(n) + \frac{1}{4} y(n-1) = x(n) + \frac{1}{2} x(n-1)$ Derive the system transfer function, the impulse response and frequency response of the system.

Or

(b) Consider a discrete time LTI system described by the difference CO4- App (16) equation

$$y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = 2x(n)$$

$$x(n) = \left(\frac{1}{4}\right) u(n)$$

(a) Determine the frequency response of the system

(b) Find the impulse response of the system

- (c) Determine its response to the input is
- 15 (a) Determine the unit step response of the system whose difference CO4- App (16) equation is

.

y(n) - 0.7y(n-1) + 0.12y(n-2) = x(n-1) + x(n-2)Or

(b) (i) Determine the inverse z-transform of $X(Z) = \frac{1+3z^{-1}}{(1+3z^{-1}+2z^{-2})}$ CO4- App (8) for |z| > |3|

(ii) Find the z-transform and ROC of the anti causal sequence x(n) CO4- App (8) = {-3,-2,-1,0,1,2,1,-1,1}

94B04