A	Reg. No. :					
	Question Paper Code: 94B02					
B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022						
Fourth Semester						
Biomedical Engineering						
19UBM402- Analog And Digital Integrated Circuits						
(Regulation 2019)						
Duration: Three hours Maximum: 100 Marks						
Answer ALL Questions						
PART A - $(10 \text{ x } 2 = 20 \text{ Marks})$						
1.	List the features of an Instrumentation amplifier.	CO1-U				
2.	Find the maximum frequency for a sine wave output voltage of 10 V peak with an op-amp whose slew rate is $1V/\mu s$.	CO2-Ap				
3.	Enumerate the advantages of active filters over the passive filters?	CO1-U				
4.	What is the drawback in zero crossing detectors? State a method to overcome it.	CO1-U				
5.	Draw the pin diagram of 555 timer. Why pin number 5 is grounded through a capacitor?	CO1-U				
6.	Mention some typical applications of PLL.	CO1-U				
7.	Lealize 2 input X-OR gate using NOR gates only.CO1-U					
8.	ate the limitations of karnaugh map. CO1-U					
9.	Draw the logic diagram and function table of a SR latch implemented using NAND gates.	CO1-U				
10.	What is race around condition? How it is avoided?	CO1-U				
PART – C (5 x 16= 80 Marks)						
11.	(a) (i) Elaborate in detail any two performance characteristics of an CO1 op-amp for DC input with its limitations. Analyze and suggest the	- U (8)				

compensation techniques.

(ii) Enlighten in detail about an Instrument which has high CO3-Ana (8)CMRR, Gain and low output impedance. Derive its output expression and state its advantage and application.

Or

(b) (i) Draw and explain a positive clamper circuit using operational CO1-U (8) amplifier.
 (ii) Design a signation that accurate a series to evide What CO2 Area

(ii) Design a circuit that converts a square wave to spikes. What CO3-Ana (8) are the disadvantages of ideal circuit? Mention the modifications done in the practical circuit.

12. (a) (i) Briefly mention the disadvantages of 'zero crossing detector' CO1-U (8) and explain how they are overcome in 'Schmitt trigger circuit'.

(ii) Explain the working principles of successive approximation CO1-U (8) type ADC.

Or

- (b) (i) Derive the transfer function of second order Low Pass Filter CO1-U (8) and plot its frequency response.
 (ii) Explain the suitable DAC which will overcome the drawbacks CO1-U (8) of Weighted Resistor type DAC. .
- 13. (a) With a neat functional diagram, explain the working of 555 timer CO1- U (16) as mono stable multivibrator and derive an expression for the frequency of oscillation with relevant waveforms.

Or

(b) (i) Explain the functionality of analog phase detector of PLL and CO1-U (8) derive the expression for lock-in range.

(ii) Briefly explain the working of a general purpose voltage CO1-U (8) regulator with necessary diagrams.

14.	(a)	(i) Simplify the following Boolean function and implement the same using NAND logic.	CO2- App	(12)
		$F(A,B,C,D,E) = \Sigma m (1,4,8,10,11,20,22,24,25,26) + d(0,12,16,17)$		
		(ii) Implement the following Boolean function using suitable multiplexer. $F(A,B,C,D)=\sum m(0,1,3,4,8,9,15)$	CO2- App	(4)
		Or		
	(b)	(i) Simplify the following function using Quine McCluskey method $F(A,B,C,D) = \Sigma m(2,3,7,9,11,13) + \Sigma d(1,10,15)$	CO2- App	(12)
		(ii) Design half adder using only NAND gates.	CO2- App	(4)
15	(a)	Design a Synchronous BCD counter using JK flip-flops. Or	CO2- App	(16)
	(b)	(i) Design PIPO and PISO shift registers using Delay flip-flops.	CO2- App	(8)
		(ii) Implement the following function using PLA: $F(x,y,z) = \sum m(1,2,4,6)$	CO2- App	(8)

94B02