Question Paper Code: U2E05

B.E./B.Tech. DEGREE EXAMINATION, MAY 2022

Second Semester

		Artificial Intelli	gence & Data Scien	ice	
		21UAD205- I	Digital Logic Design	1	
		(Regul	lations 2021)		
Duration: Three hours Maxim				Maximum: 100	Marks
		Answer	All Questions		
		PART A -	(5x 1 = 5 Marks)		
1.	In which code the successive code characters differ in only one bit position?				CO1- R
	(a) gray code	(b) excess 3 code			
	(c) 8421 code	(d) algebraic code			
2.	How many full adder required to design 4 bit binary parallel adder				CO2- R
	(a) 1	(b) 2	(c) 3	(d) 4	
3.	Which of the fol blem?	lowing flip-flops is	free from the race	around the	CO1- R
	(a) T flip-flop	(b) SR flip-flop	(c) Master-Slave F	Flip-flop (d) flip-flo	op
4.	In synchronous circuit, the present state is determined by CO1- R				
	(a) unclocked flip-flops (b) clocked flip-flops (c) flip-flops				atches
5.	For programmable logic functions, which type of PLD should be used? CO1- U				
	(a) PLA	(b) PAL	(c) CPLD	(d) SLD	
		PART – B	$(5 \times 3 = 15 \text{ Marks})$		
6.	State and prove Demorgan's theorem				CO1- R
7.	Differentiate Half and Full adder			(CO2- U

Define Priority encoder with truth table and circuit

List the basic types of shift registers in terms of data movement.

CO1-R

CO1-R

8.

9.

10. Define fundamental mode asynchronous sequential circuit

 $PART - C (5 \times 16 = 80 \text{ Marks})$

11. (a) Determine the SOP and POS forms of F = (0, 2, 6, 8, 10, 12, 14, 15)CO3-App (16) using k-map

Or

- (b) Reduce the following equation using Quine McClucky CO3-App (16) method of minimization F(A,B,C,D) = m(0,1,3,4,5,7,10,13,14,15)
- 12. (a) Differentiate full sub tractor and full adder and design a full adder CO3-App (16) using NAND gate alone

Or

Or

- (b) Design a circuit for priority encoder CO3-App (16)
- 13. (a) Explain the operation of JK flip-flops with suitable diagrams? CO3-App (16)

- (b) Using SR flip flops, design a parallel counter which counts in the CO3-App (16) sequence 000,111,101,110,001,010,000
- 14. (a) Give hazard– free realization for the following Boolean function CO3-App (16) $f(A,B,C,D) = \pi (0,2,6,7,8,10,12)$

Or

- (b) Give hazard– free realization for the following Boolean function CO3-App (16) $f(A,B,C,D) = \pi (3,4,7,8,9,12,15)$
- 15. (a) Explain in detail about Static and dynamic RAM with neat diagram? CO3-App (16)Or
 - (b) Implement the following functions using PLA. CO3-App (16)

F1 (A, B, C) =
$$\Sigma$$
m (1, 2, 4, 6)
F2 (A, B, C) = Σ m (0, 1, 6, 7)
F3 (A, B, C) = Σ m (2, 6)