٨	
\boldsymbol{H}	

Reg. No.:	
-----------	--

Question Paper Code: 96A02

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2022

Sixth semester

Agriculture Engineering

19UAG602- Design of Agriculture machinery

		190A0002- Design	of Agriculture machiner	. y	
		(Regul	ation 2019)		
Dur	ation: Three hours			Maximum: 100 I	Marks
		Answer A	LL Questions		
		PART A - (10	$0 \times 1 = 10 \text{ Marks}$		
1.	The ratio of ultimate	e stress to allowable str	ess is called		CO1- U
	(a) Frature	(b)maximum stress	(c)theories of failu	re (d)factor o	of safety
2.	Stress is defined as t	the ratio of			CO1- U
	(a) Load to area	(b) pressure to area	(c) load to volume	(d) pressure to	o volume
3.	Which one of the fo	llowing drives is used	without slipping		CO1- U
	(a) V belt	(b) flat belt	(c) cone pulley	(d) Chain driv	/e
4.	The groove angle fo	r rope is			CO1- U
	(a) 35°	(b) 40°	(c) 25°	(d) 45°	
5.	The elements which		CO1- U		
	(a) couplings	(b)key	(a) couplings	(b)key	
6.	If the given shear value, the design is	stress/ bending stress	is more than determi	ned	CO1- U
	(a) not safe	(b) moderate	(a) not safe	(b) moderate	
7.	A device which defl	ects or distorts under the	he action of load is calle	ed	CO1- U
	(a) shaft	(b) spline	(c)key	(d) spring	
8.	Stiffness of spring is	s the ratio of			CO1- U
	(a) load/ deflection		(b) deflection/ load		
	(c)deflection/pressur	re	(d) pressure/ deflection	on	

9.	The ratio of the pitch circle diameter to the number of teeth is called CO1-					O1- R		
	(a) c	diametral pitch	(b) pitch circle	(c) module	(d) ci	rcular pitch		
10	The	radial distanc	e of a tooth from the	pitch circle to the top of	the tooth.	C	O1- R	
	(a) a	addendum	(b) dedendum	(c)pitch	(d)	pitch circle		
			PART –	B (5 x 2= 10 Marks)				
11	Des	cribe the term	of machine design.		CO1- U			
12	Name the few material for belt drives CO1-						O1- U	
13	Describe the whirling speed of the shaft.					CO2	2- App	
14						C	O1- U	
15	Exp	lain the term of	of arc of approach in	gears		C	O1- U	
			PART	– C (5 x 16= 80 Marks)				
16	(a)	15 <i>MPa</i> , σ_y	= $5MPa$; τ_{xy} = 5 N incipal stresses and	member is given as for MPa. Estimate the male locate the angle made	ximum and	CO3- App	(16)	
	(b)	the maximum the gudegon can be safely	f a reciprocating community of a reciprocating community matter than the process of the process	mpressor has a diameter ston fall is 1.25 MN/ m ² the small end of the conto 20 M/m ² . Evaluateth	² . Assuming nnecting rod	CO6- E	(16)	
17	(a)	ratio 2.5. Ch pulleys is 3.6 5-ply, flat D speed load ra	noose a flat belt crossom. Take belt speed a Dunlop belt. Power thing is 0.0118 KW/pdd length of the belt.	r pulley running at 1440 sed drive. Centre distants 16 m/s. Load factor is to be transmitted is 12 ly/mm, width at v = 5 m.	1.3. Take a KW. High	CO6- E	(16)	
	(b)	kW. Find the exceed 145 I that at the s dimensions of	800 mm diameter reve width of the leather N in 10 mm width. To alack side. Evaluate of the various parts	belt, if the maximum to the tension of the tight state of the pulley assuming	ension is not side is twice naft and the	СО6- Е	(16)	

18 (a) A shaft of 1000 mm long is subjected to shear stress of 60 MPa and CO3- App (16) has an angle of twist is equal to 0.017 radian. Determine the diameter of the shaft. Take $G = 0.8 \times 10^5$ MPa.

Ot

- (b) Examine and Design a muff or sleeve couplings for a shaft to transmit CO3-C (16) 35 kw at 350 rpm. The safe shear stress for the steel shaft is 60 N/mm2 and fr the cast iron muff is 16 N/mm2. The allowable shear and crushing stresses for the key material are 50 and 150 N/ mm2.
- 19 (a) A helical valve spring is to be designed for an operating load range of CO3- App (16) 90N to 135 N. the deflection of the spring for this load range is 7.5 mm. Assuming a spring index of 10. A permissible shear stress of 480 N/mm2 and modulus of rigidity of 0.85×10^5 N/mm² for the material. Determine the dimensions of the spring.

Or

- (b) A helical tension spring is used in printing machinery requires a CO3-App preload of 40 N. the wire diameter of spring is 5 mm. with spring index is 5. The spring has 18 coils. The maximum permissible shear stress for the spring is 420 MPa and modulus of rigidity is 84 kN/mm². Determine
 - (i) The initial torsional shear stress in the wire.
 - (ii) The spring index
 - (iii) The spring rate
 - (iv) The spring deflection corresponding to the load found.
- 20 (a) A gear drive is required to transmit a maximum power of 25 kW. The CO6-E velocity ratio is 1:2 and r.p.m. of the pinion is 200. The approximate centre distance between the shafts may be taken as 600 mm. The teeth have 20° stub involute profiles. The static stress for the gear material (which is cast iron) may be taken as 60 MPa and face width as 10 times the module. Find the module, face width and number of teeth on each gear. Check the design for dynamic and wear loads. The deformation or dynamic factor in the Buckingham equation may be taken

Or

(16)

(16)

(b) A pair of helical gears are to transmit 17 kW. The teeth are 20° stub CO2- App in diametral plane and have a helix angle of 45°. The pinion runs at 10 000 r.p.m. and has 80 mm pitch diameter. The gear has 320 mm pitch diameter. If the gears are made of cast steel having allowable static strength of 100 MPa; determine a suitable module and face width from static strength considerations and check the gears for wear, given σ_{es} =618 MPa.