A		Reg. No. :											
		Question Pap	er (Cod	e: 9	402	5						
	B.E./E	B.Tech. DEGREE E	XAM	IINA	TIC	N, N	/AY	202	2				
		Fourth	Sem	ester									
		Agriculture	e Eng	ginee	ring								
	19UMA4	25 - Probability, Sta	atisti	cs an	d Ni	umer	ical	Metł	nods				
		(Regula	tions	201	9)								
Dur	ation: Three hours							Max	ximu	m: 1	00 N	larks	5
		Answer Al	ll Q	uesti	ons								
		PART A - (10	x 1 =	= 10	Mar	ks)							
1.	The r th moment about	origin is										CC)6-R
	(a) $\mu(X)$	(b) $\mu(X^2)$		(c)	$\mu(2$	K')		(d) No	one o	of the	e abo	ve
2.	The limiting form a Po	bisson distribution is	5									CC)6-U
	(a) Geometric	(b)Binomial		(c)	Nor	mal		(d) No	one c	of the	e abo	ve
3.	The degrees of freedom	n in t-tests is										CO	5-U
	(a) n-1	(b) n-2		(c)	n-3		(d) n-	-4				
4.	Chi-square test is very	popularly known as	s a te	st of								CC)6-R
	(a) Independent of attr	ibutes (b) t- test		(c)	F-te	st	(d) go	odne	ss of	fit		
5.	Latin square design is	a										CO	6- U
	a) One way	b) Two way		c)	Thre	ee wa	ıy		d) 1	None	oft	hese	
6.	The science of experim	nental designs is ass	ociat	ted w	rith t	he na	ame					CC	96-U
	(a) Latin square	(b) Latin cube		(c)	RBI	C			(d) N	lone	of th	lese	
7.	Lagrange's interpolation	on formula can be u	sed f	or	i	nterv	val					CC)6- U
	(a) equal	(b) unequal	(c) eq	ual a	and u	inequ	ıal	(d) 1	none	of tl	nese	
8.	Newton's forwardintervals	interpolation	form	nula	u	sed	01	nly	fo	r		CC	96-U
	(a) equal	(b) unequal	(c) equ	ial a	nd ur	nequa	al	(d)	non	e of 1	these	

- 9. Trapezoidal rule is so called, because it approximates the integral by the CO6-U sum of ______trapezoids
 - (a) n (b) n+1 (c) n-1 (d) 2n
- 10. In Simpson's 3/8 rule the number of subintervals should be_____CO6-U(a) multiple of 1(b) multiple of 2(c) multiple of 3(d) All of thesePART B (5 x 2= 10Marks)
- 11. Using Probability mass function, Compute the mean value for the following CO1-App distribution.

Х	-2	-1	0	1
P(X)	0.4	0.1	0.2	0.3

- 12. Give two types of errors in testing a statistical hypothesis CO6-U
- For a one way classification on 12 observations involving 3 treatments the CO3-App sum of squares of treatment and sum of squares of total are 8 and 36 respectively, compute the value of the F ratio.
- 14. State Lagranges interpolation formula for three set of values (X_0, Y_0) , (X_1, Y_1) CO6-U and (X_2, Y_2) are given
- 15. Evaluate using two –point Gaussian quadrature formula $\int_{1}^{1} (3x^2 + 5x^4) dx$ CO5-App

$$PART - C (5 \times 16 = 80 Marks)$$

16. (a) A Random Variable X has the following probability distribution CO1-App (16)

X=x	0	1	2	3	4	5	6	7		
P(X=x)	0	a	2a	2a	3a	a^2	$2a^2$	$7a^2+a$		
Find (i) 'a'										

Find (1) a

- (ii) $P(X < 6), P(X \ge 6), P(0 < X < 4),$
- (iii) P(X < 6/X > 4)
- (iv) Find the minimum value of ' λ ' such that $P(X \le \lambda) > \frac{1}{2}$
 - Or
- (b) (i) Using the probability mass function for Binomial distribution, CO1- App (8)
 Compute the moment generating function and hence find its mean and variance.

(ii) Using an Exponential distribution State and Prove the memory CO1- App (8) less property..

17. (a) (i) Five coins are tossed 256 times. The number of heads observed CO2-App (8) is given below. Examine if the coins are unbiased, by employing χ^2 goodness of fit.

No of Heads	0	1	2	3	4	5
Frequency	5	35	75	84	45	12

(ii) Two horses A and B were tested according to time (in seconds) CO2-App (8) to run on a particular track with the following results:

1			C					
Horse A	28	30	32	33	33	29	34	
Horse B	29	30	30	24	27	29		

Test whether horse A is running faster than B at 5% level..

(b) (i) A company keeps records of accidents. During a recent safety CO2 -Ana (8) review, a random sample of 60 accidents was selected and classifields by the day of the week on which they occurred.

Days	Mon	Tue	Wed	Thu	Fri
No.of. accidents	8	12	9	14	17

(ii) To verify whether a course in accounting improved CO2 -Ana (8) performance, a similar test was given to 12 participants both before and after the course. The marks are:

Befor	44	40	61	52	32	44	70	41	67	72	53	72
e												
After	53	38	69	57	46	39	73	48	73	74	60	78
				0 10								

Was the course was useful?

18. (a) Analyse the following is a Latin square of a design.

CO3-U (16)

A 105	B 95	C 125	D 115
C115	D 125	A 105	B 105
D 115	C 95	B 105	A 115
B 95	A 135	D 95	C 115

Or

(b) Four varieties A, B, C, D of a fertilizer are tested in a randomized CO3-App block design with 4 replication. The plot yields in pounds are as follows.

	1	2	3	4
1	A(12)	D(20	C(16)	B(10
2	D(18)	A(14	B(11)	C(14
3	B(12)	C(15	D(19)	A(13
4	C(16)	B(11	A(15)	D(20

Analyse the experimental yield.

19. (a) (i) From the data given below, find the number of students whose CO4-App (8) weight lies between 60-70

Weight in lbs	0-40	40-60	60-80	80-100	100-120
No. of Students	250	120	100	70	50

(ii) Using Lagrange's interpolation formula calculate the profit in CO4-App (8) the year 2000 from

year	1997	1999	2001	2002
Profit (Rs.in lakhs)	43	65	159	248
	Or			

(b) Fit a natural cubic spline for the following data

Х	-1	0	1	2
Y	-1	1	3	35

20. (a) Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{dxdy}{1+x+y}$ by (i). Trapezoidal (ii) Simpson's rule by CO5-App (16) taking h=k=0.25

Or

(b) (i) Evaluate. $\int_{1}^{5} \frac{dx}{x}$ Using three point Gaussian quadrature CO5-App (8) formula.

(ii) Evaluate the integral
$$\int_{1}^{2} \frac{dx}{x^{2}+1}$$
 using Trapezoidal rule and CO5- App (8)
Simpson's 1/3rd rule

CO4-App (16)