Reg. No.:										
-----------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 34022

B.E. / B.Tech. DEGREE EXAMINATION, AUGUST 2021

Fourth Semester

Civil Engineering

01UMA422 - NUMERICAL METHODS

(Common to EEE, EIE and ICE)

(Regulation 2013)

Duration: 1:45 hour Maximum: 50 Marks

PART A - $(10 \times 2 = 20 \text{ Marks})$

(Answer any ten of the following questions)

- 1. Find an iterative formula for finding \sqrt{N} where N is a real number, using Newton-Raphson formula.
- 2. Compare Gaussian elimination & Gauss-Jordan methods in solving system $[A]{X} = {B}$.
- 3. Using Lagrange's interpolation, find the polynomial through (0,0) (1,1) and (2,2).
- 4. State the formula for three Point Gaussian-quadrature.
- 5. By method of least squares find the normal equations to fit straight line.
- 6. If a real root of the equation f(x) = 0 lies in (a, b), state the formula that gives the root approximately as per Regula Falsi method.
- 7. Write down the condition for convergence of Gauss Seidel method.
- 8. Define Lagrange's inverse interpolation formula.
- 9. Evaluate $\int_{-3}^{3} x^4 dx$, by Trapezoidal rule.

10. Fit a straight line of the form y = a + bx, by the method of group averages for the following data.

х	0	5	10	15	20	25
у	12	15	17	22	24	30

- 11. Find an iterative formula for finding \sqrt{N} where N is a real number, using Newton-Raphson formula.
- 12. Compare Gaussian elimination & Gauss-Jordan methods in solving system $[A]{X} = {B}$.
- 13. Using Lagrange's interpolation, find the polynomial through (0,0) (1,1) and (2,2).
- 14. State the formula for three Point Gaussian-quadrature.
- 15. By method of least squares find the normal equations to fit straight line.

$$PART - B (3 \times 10 = 30 \text{ Marks})$$

(Answer any three of the following questions)

- 11. Find the positive real root of 3x cosx 1 = 0 using Newton-Rapshon method. (10)
- 12. Solve the following system of equation using Gaussian elimination method. $28x + 4y z = 32, \quad x + 3y + 10z = 24, 2x + 17y + 4z = 35. \tag{10}$
- 13. Using Newton's backward formula find f(7.5) from the following table: (10)

X	1	2	3	4	5	6	7	8
f(x)	1	8	27	64	125	216	343	512

14. Find the first two derivatives of $y = (x)^{1/3}$ at x = 50 & x = 56 given the table below.

x :	50	51	52	53	54	55	56
y :	3.6840	3.7084	3.7325	3.7563	3.7798	3.8030	3.8259

(10)

15. Find the equation of the best fitting straight line to the following data by method of group averages: (10)

X	0	5	10	15	20	25	30
у	10	14	19	25	31	36	39