Reg. No. :								
Question Paper Code:93305								

B.E. / B.Tech. DEGREE EXAMINATION, AUGUST 2021

Third Semester

Electrical and Electronics Engineering

19UEE305 FIELD THEORY

(Regulation 2019)

Duration: 1:45 hour

Maximum: 50 Marks

PART A - (10 x 2 = 20 Marks)

(Answer any ten of the following questions)

1.	Explain the terms differential length and differential surface in cylindrical coordinate system	CO1 U
2.	Explain the terms solenoidal and irrotational as applied to vector F	CO1 U
3.	Write the theorem which converts surface integral into volume integral	CO1 R
4.	What are the operations you can do with del operator?	CO1R
5.	Define Electric Field Intensity	CO2 R
6.	What is the difference between electric flux density and Current density	CO2 A
7.	Identify the law which is used in electrostatic to determine the electric field intensity between two point charges and explain the same	CO2 A
8.	Write the point form of ohms	CO2 R
9	State the difference between Electric field intensity and Magnetic field intensity and also state the relation between intensity and density	CO3 U
10	Determine the magnitude of the magnetic field of a wire loop at the center of the circle with radius R and current I.	CO3 U
11	State ampere circuital law	CO3 R
12	Contrasts Transformer EMF and Motional EMF	CO4 R
13	State Poynting theorem and Skin Depth	CO4 R
14	For time varying field write the Maxwell equation which is derived from ampere circuital law	CO5 R
15	Find the maximum torque on a 100 turn square loop of a wire of 10 cm on a side that carries 15 A of current in a 2 tesla field.	CO6 A

PART – B (3 x 10= 30 Marks)

(Answer any three of the following questions)

16. Determine the curl and divergence of the given vector field $P = x^2yz a_x + xz a_z$ CO1- U	16.	Determine the curl and divergence of the given vector field $P = x^2yz a_x + xz a_z$	CO1- U	(10)
---	-----	--	--------	------

- 17. Four point charges of 10µC each are placed at the corners of square of side CO2- U (10)
 1m.Determine the value of the charge that is to be placed at the centre of the square so that this system of charges is brought to equilibrium
- Apply Biot Savart law and find the magnetic field intensity at the point p CO3- E (10) located in y axis from distance r from the origin, for infinite long straight conductor placed in Z axis
- Elucidate the force acting on a carrying conductor subject to Magnetic Field, CO5- U (10) and Torque on current carrying loop subjected to magnetic field with the example of working of a motor
- 20. With necessary explanation, derive the Maxwell's equation in differential and CO6- U (10) integral forms for dynamic fields