Reg. No. :	:		
Question P	Paper Code: 92005		
B.E./B.Tech. DEGREE EXAMINATION, AUGUST 2021			
Seco	ond Semester		
Computer S	Science Engineering		
19UPH205 – PHYSICS FOR INFORMATION SCIENCE			
(Common to EEE	& Information Technology)		
(Reg	ulation 2019)		

Maximum: 50 Marks

PART A (Answer Any Ten) 10*2 = 20 Marks 1. Define relaxation and collision time of free electrons in a metal. CO1 - U2. Give the microscopic form of ohm's law in a metallic conductor. CO1 - U3. Define Magnetic induction CO1 - UThe intrinsic carrier density at room temperature in Ge is 2.37×10^{19} per m³. 4. CO2 - UIf the electron and hole Mobility are 0.38 and $0.18m^2v^{-1}s^{-1}$ respectively. Calculate its resistivityThe intrinsic carrier density at room temperature in Ge is $2.37 \text{ x}10^{19} \text{ per m}^3$. 5. **Define Mobility** CO1 - U6. Why do we prefer GaAs for making LED and LASER? CO1– U 7. Mention the various breakdown mechanisms CO1 –U CO3 - U8. Define polarization of a dielectric material The number of atoms in volume of one cubic meter of hydrogen gas is 9.8 \times 9 CO1 – U 10²⁶.The radius of the hydrogen atom is 0.53 Å. Calculate the polarisability and relative Permittivity. What are requirements of good insulating materials? 10 CO4 - U11 Distinguish single mode and multi mode fiber? CO1 - UCO1 – U 12 What are basic attenuation mechanisms? 13 Write any two examples for High resistive materials? CO1 - U

Duration: 1.45 hrs

- 14 Write any two applications of Hall Effect
- 15 In a magnetic material the field strength is found to 10^{6} A m⁻¹. If the magnetic CO6– U susceptibility of the material is 0.5 x 10^{-5} . Calculate the intensity of magnetization in the material.

	PART B (Answer Any Three)	3*10 = 30 Marks	
16.	Based on the assumptions of classical free electron theory derive an expression for electrical conductivity of metals. What are the success and failures of this theory?	CO1-U	(10)
17	Obtain an expression for the Hall coefficient for Silicon doped with Antimony and also describe the experimental set up for the measurement of Hall voltage	CO1-App	(10)
18	Describe the domain theory of ferromagnetism and also explain the energy involved in domain structure.	CO1- U	(10)
19	Obtain an expression for space charge and electronic polarization in dielectrics	CO3- U	(10)
20	Describe	CO4- U	(10)
	(i) The propagation of light through an optical fiber.		

(ii) What are numerical aperture and acceptance angle of a fiber?

CO1 – U