Reg. No. :

Question Paper Code: 54022A

B.E. / B.Tech. DEGREE EXAMINATION, AUGUST 2021

Fourth Semester

Civil Engineering

15UMA422 - NUMERICAL METHODS

(Common to EEE, EIE and Chemical Engineering)

(Regulation 2015)

Duration: 1:45 hrs

Maximum: 50 Marks

PART A - (10 x 2 = 20 Marks)

Answer any ten of the following questions

1.	Find the interval for a positive root of the polynomial $x^3 - 2x + 5 = 0$.	CO1- App
----	--	----------

2. Find y (1) using Lagrange's interpolation formula from the given data: CO2- App x: 0 1 3
y: 5 6 50

3. Find
$$\int_0^1 \frac{dx}{1+x}$$
 using two-point Gaussian quadrature formula. CO3- App

- 4. Find y(1.1) if y' = x + y, y(1) = 0 using Taylor's series method of CO4- App second order.
- 5. State Crank Nicholson difference scheme to solve a parabolic equation. CO5- R
- 6. What is the condition for convergence of Newton-Raphson method and order CO1-R of convergence?
- 7. State Lagrange's interpolation formula. CO2-R
- 8. Apply two point formula to evaluate CO3-App

$$\int_{-1}^{1} \frac{dx}{1+x^2}$$

- 9. Write the Euler's algorithm for first order differential equation. CO4-R
- 10. Write Crank-Nicolson formula for one dimensional heat equation. CO5-R
- 11. Find an iterative formula to find , where N is a positive number. CO1-E
- 12. The two dimensional random variable (X,Y) has the joint density function CO2-E f(x,y) = x + 2y, x = 0,1,2; y = 0,1,2

(1) Find the value of k

13.	Why Simpson's one third rule is called a closed formula?	CO3-R
14.	Solve: $dx=1-y, y = 0$ for $x=0.1$ by Euler's method.	CO4-E
15	What is the classification of $f_{xx}+2f_{xy}+f_{yy}=0$?	CO5-R

15 What is the classification of $f_{xx}+2f_{xy}+f_{yy}=0$?

PART - B (3 x 10= 30Marks)

Answer any three of the following questions

- 16. Solve the following system of equations by Gauss elimination method, CO1 - App (10)2x + 3y - z = 5, 4x + 4y - 3z = 3, 2x - 3y + 2z = 2
- 17. Find y at x = 43, by using Newton's forward interpolation formula from CO2 -App (10)the following data,

X	40	50	60	70	80	90
У	184	204	226	250	276	304

18. Find y and y at x = 1.5 from the following table,

Х	1.5	2.0	2.5	3.0	3.5	4.0
у	3.375	7.0	13.625	24.0	38.875	59

CO₄- App (10)

(10)

(10)

CO3- Ana

CO5 -U

19. Solve

 $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ given y(0) = 1 at x = 0.2 and x = 0.3 using

Runge – Kutta method of 4th order.

20. Using Explicit scheme solve the wave equation

 $u_{tt} = u_{xx}, 0 < x < 1, t > 0$, given $u(x, 0) = u_t(x, 0) = u(0, t) = 0$ and u(1, t)

= 100 sin(π t). Compute u for 4 times steps with h = 0.25.