		Reg. No. :											
		Question Pape	er C	ode	: 92	2004	1						
B.E./B.Tech. DEGREE EXAMINATION, AUGUST 2021													
		Second S	Seme	ster									
	19UMA204-	Calculus,Complex a	naly	vsis a	and l	Num	erica	al m	etho	ds			
	E	lectronics and Comm	unica	ation	Eng	inee	ring						
		(Regulati	on 2	019)									
	Duration: 1.45 hrs							Max	imuı	n: 50) Ma	ırks	
		PART A (Ans	swer	Any	Ten)				10*2	2 = 2	0 Ma	ırks
•	Calculate Particular inte	egral of $(D^2 + 4D + 8)$	$y = e^2$	lx							CO1	– A	рр
2.	Solve $\frac{1}{D^2}(\cos x)$										CO1	– A	рр
8.	Solve Complementary f	Function of (x^2D^2-3)	BxD –	-5)y	=0						CO1	– A	pp
l.	Evaluate $\nabla \left(\frac{1}{r}\right)$										CO2	– A	рр
5.	Calculate unit normal v	ector to the surface x	$^{2} + x_{2}^{2}$	y + y	$x^{2} + x^{2}$	yz at	(1,-	2,1)			CO2	– A	рр
ó.	Prove that the vector \vec{F}	$= \vec{zi} + \vec{xj} + \vec{yk}$ is sole	noida	ıl							CO2	– A	рр
	Calculate the conjugate	harmonic of $u = x^2 - x^2$	y^2								CO3	–Ap	эр
8.	Find the fixed point of t	he mapping $f(z) = \frac{1}{z}$	$\frac{z}{-2}$								CO3	–Ap	р
)	Calculate the critical po	ints of the transform	ation	w =	<i>z</i> + -	$\frac{1}{z}$					CO3	–Aj	р
0	Calculate the residue of	$f(z) = \frac{e^{2z}}{z+1}$ as its po	le								CO4	- A	рр
11	Find the pole of $f(z) = -$	$\frac{\cos 2z}{(z^2+1)^2(z^2+16)^2}$									CO4	- A	рр
12	Define Removable sing	ularity									CO6	– A	pp
13	What do you mean by dia	gonally dominant?									CO6	– A	pp

1.

2.

3.

4.

5.

6.

7.

8.

9

10

14 15	State the principle used in Gauss Elimination Method State the principle used in Gauss Jordan Method	CO6 – App CO6 – App		
	PART B (Answer Any Three)	3*10 = 30 Marks		
16.	A colony of bacteria is growing an exponentially. At time t=0 it has 10 bacteria in it and at time t=4 it has 2000. At what time it have 1,00,000 bacteria?	CO1App	(10)	
17	Verify Divergence theorem for $\vec{\mathbf{F}} = (\mathbf{x}^2 - \mathbf{y}\mathbf{z})\vec{\mathbf{i}} + (\mathbf{y}^2 - \mathbf{x}\mathbf{z})\vec{\mathbf{j}} + (\mathbf{z}^2 - \mathbf{x}\mathbf{y})\vec{\mathbf{k}}$ over the rectangular parallelepiped $\mathbf{x} = 0$, $\mathbf{x} = 1$, $\mathbf{y} = 0$, $\mathbf{y} = 2$, $\mathbf{z} = 0$, $\mathbf{z} = 3$.	CO2-App	(10)	
18	Find the image of $ z - 3i = 3$ under the transformation $w = \frac{1}{z}$	CO3- App	(10)	
19	Evaluate $f(z) = \int_{C} \frac{\cos \pi z^2 + \sin \pi z^2}{(z+1)(z+2)} dz$ by using Cauchy's Integral formula	CO4- App	(10)	
	where C is $ z = 3$			

20 Solve 27x + 6y - z = 85, 6x + 15y + 2z = 72, x + y + 54z = 110 by CO5- App (10) Gauss Seidel method.