Reg. No. :

Question Paper Code: 34404

B.E. / B.Tech. DEGREE EXAMINATION, AUGUST 2021

Fourth Semester

Electronics and Communication Engineering

01UEC404 - SIGNALS AND SYSTEMS

(Regulation 2013)

Duration: 1:45 hour

Maximum: 50 Marks

PART A - (10 x 2 = 20 Marks)

(Answer any ten of the following questions)

- 1. Define step signal.
- 2. Differentiate between deterministic and random signal.
- 3. State Dirichelt's condition.
- 4. Explain about Parseval's theorem.
- 5. State and prove the differentiation property of Laplace transform.
- 6. State the condition for stability.
- 7. Prove the time shifting property of discrete time Fourier transform.
- 8. What is aliasing?
- 9. What is the z-transform of $\delta(n+k)$?
- 10. List the advantages of the state variable representation of a system.
- 11. Find the impulse response of two LTI systems when it is connected in parallel?
- 12. Prove the time shifting property of discrete time Fourier transform.
- 13. What is aliasing?

- 14. State the properties of ROC in Z transform.
- 15. List the advantages of the state variable representation of a system.

$$PART - B$$
 (3 x 10= 30 Marks)

(Answer any three of the following questions)

16.	Sketch the following type of signals: (i) u(t-2), (ii) u(t-2), (iii) -3 u(t-2)) and
	(iv) u(-t+1).	(10)
17.	Find the exponential Fourier series for the halfwave rectified sinewave with	
	amplitude A and $T = 2\pi$.	(10)
18.	Obtain the inverse Laplace transform of the function $X(s) = 1/(s^2+3s+2)$,	
	$ROC:-2 < Re\{s\} < -1.$	(10)
19.	List out and explain any four properties of DTFT.	(10)
20.	Find the impulse response and step response for the following	system
	$V(x) = 2/4 x_1(x-1) + 1/8 x_2(x-2) + x_1(x)$	(10)
	I(n) = 5/4 y(n-1) + 1/8 y(n-2) = x(n).	(10)

34404