Reg. No. :								
------------	--	--	--	--	--	--	--	--

Question Paper Code: 53022A

B.E. / B.Tech. DEGREE EXAMINATION, AUGUST 2021

Third Semester

Computer Science Engineering

15UMA322 - PROBABILITY, STATISTICS AND QUEUEING SYSTEMS

(Common to Information Technology branch)

(Regulation 2015)

(Statistical tables are may be permitted)

Duration: 1:45 hour

Maximum: 50 Marks

PART A - (10 x 2 = 20 Marks)

(Answer any ten of the following questions)

1.	A fair coin is tossed twice; find($X \le 1$) where X denotes number of heads in each experiment.	CO1- R
2.	Define Conditional distribution for two-dimensional discrete and continuous random variable.	CO2- R
3.	List out the three basic principles of experimental design.	CO3- R
4.	Write Little's formula for Queuing Theory.	
5.	Define: Open Jackson Networks.	CO5- R
6.	Define Moment generating function	CO1- App
7.	Describe the conditional distribution of the two dimensional random variable	CO2- R
8.	Construct the ANOVA table for Complete Randomised design	CO3- R
9.	Explain the Queueing system	CO4- R
10.	State the characteristics of open Jackson networks	CO5- R
11.	For a triangular wave distribution $f(x) = \begin{cases} x, 0 < x < 1 \\ 2 - x, 1 < x < 2 \end{cases}$ find the mean?	CO1- R
	, find the mean?	
12.	State any one form of central limit theorem.	CO2- R

13.	• In (M/M/1) : (k/FCFS) model $\lambda = 3$ /hr and $\mu = 4$ / hr and $P_0 = 0.28$. What is the effective arrival rate of a customer?							
14.	Define a two stage tandem queue.					CO4- R		
15	What are the uses of analysis of variance?					CO5- R		
		PA	ART – B (3 x 10	= 30 Marks)				
		(Answer a	ny three of the	following questions)				
16.	In a certain binary communication channel, the probability a transmitted zero is received as zero is 0.95 and the probability that a transmitted one is received as a one is 0.90. Assuming that the probability a zero is transmitted is 0.4. Find					(10)		
	(a) probability a	one is received						
	(b) probability a	one was transmi	tted given a one	was received.				
17.	The joint probability distribution of two dimensional random variable					(10)		
	(X,Y) is given by $f(x,y) = \frac{1}{3}(x+y)$, $0 \le x \le 1, 0 \le y \le 2$. Find the							
	correlation coef regression.	ficient. Also fi	nd the equatio	ons of two lines of				
18.	Analyze the following latin square experiment.					(10)		
	A 105	B 95	C 125	D 115				
	C 115	D 125	A 105	B 105				
	D 115	C 95	B 105	A 115				
	B 95	A 135	D 95	C 115				
9	In a railway mar per day. Assumi distribution and an average of 3 empty (ii) the av	shalling yard, go ing that the inter the service time of minutes. Cal- verage queue len	bods trains arrive r-arrival time fo distribution is a culate (i) the p gth assuming th	e at a rate of 30 trains blows an exponential also exponential with robability of yard is e line capacity of the	CO4- App	(10)		

20. Derive the Pollaczek-Khintchine formulaCO5- U(10)

yard is 9 trains.