Question Paper Code: 56201

B.E./B.Tech. DEGREE EXAMINATION, MAY 2021

Sixth Semester

Computer science and Engineering

15UCS601- PRINCIPLES OF COMPILER DESIGN

(Regulation 2015)

	Duration: 1:45 hrs	Maximum: 50 Marks
	PART A	
	(Answer any Ten Questions $10 \times 2 \text{ Mark} = 20 \text{ Mark}$	s)
1.	Compare Compiler and Interpreter.	(CO1-U)
2.	Illustrate the language processing system.	(CO1-U)
3.	What are the additional tasks done by the lexical analyzer besides lexical	analysis? (CO1-U)
4.	Draw the syntax tree of the statement a=a+b*(e/f)	(CO2- APP)
5.	Differentiate top down and bottom up parsing.	(CO2-U)
6.	When the grammar is said to be LL(1)?	(CO2-U)
7.	Draw the quadruple structure for the following statement $x = -a*b + -a*b$.	(CO3- APP)
8.	Generate three address code for the statement $x=a*b+c/d-e$.	(CO3- APP)
9.	What is back patching?	(CO3-U)
10.	What is common subexpression?	(CO4-U)
11.	What is peephole and what is the need of peephole optimization?	(CO4-U)
12.	Optimize the following loop	(CO4-
	sum=0;	APP)
	i=1; a,b=5;c=8;	
	while(i<=10) do	
	{	
	a=b+c;	
	sum=sum+i*I;	
	i++;	
	}	
13.	Define iteration spaces.	(CO5-U)
14.	Define temporal and spatial locality.	(CO5-U)
15.	What is a Diophantine Equation?	(CO5-U)

PART - B

(Answer any Three Questions $3 \times 10 = 30 \text{ Marks}$) Illustrate the process of compilation for the program segment s=n*(n-1)16. CO1 - APP (10)with a neat sketch. Design non-recursive predictive parser for the following grammar and 17. parse the string id+id*id. $E \rightarrow E + T \mid T$ CO2 - APP (10) $T\rightarrow T*F | F$ $F \rightarrow (E) | id$ Explain the translation of Boolean expressions in detail. 18. CO3 - U (10)Construct the DAG for the following basic block 19. 1. t1:=4*i 2. t2:=a[t1]3. t3:=4*i 4. t4:=b[t3]5. t5:=t2*t4CO4 - APP (10)6. t6:=prod+t5 7. prod:=t6 8. t7:=i+1

CO5 - U

(10)

9. i = t7

10. if i <= 20 goto 1

20. Explain in detail about how synchronization can be done in parallelism