Question Paper Code: 54203A

B.E. / B.Tech. DEGREE EXAMINATION, JUNE 2021

Fourth Semester

Computer Science and Engineering

15UCS403- DESIGN AND ANALYSIS OF ALGORITHMS

(Regulation 2015)

	Duration: 1:45 hrs		Maximum: 50 Marks		
PART A					
(Answer any Ten Questions $10 \times 2 \text{ Mark} = 20 \text{ Marks}$)					
1.	Design a recursive algorithm for computing 2^n for any nonnegative integer n the on the formula $2^n = 2^{n-1} + 2^{n-1}$	n that is based		(CO1-U)	
2.	Define the various case efficiency analysis of an algorithm		(CO1-U)		
3.	Define Algorithm Design Technique? Mention Some types.		(CO1-U)		
4.	State the difference between Quick sort and merge sort.			(CO2-U)	
5.	Write the pseudo code for Binary search algorithm	do code for Binary search algorithm		(CO2-U)	
6.	Sort the list E,X,A,M in alphabetical order by bubble sort. Show the result of each iteration.		(CO2-U)		
7.	Define Dynamic Programming and list out its features.		(CO3-U)		
8.	What is principle of optimality?		(CO3-U)		
9.	Define feasible and optimal solution.		(CO3-U)		
10.	Define lower bound and list the various methods to calculate it?			(CO4-U)	
11.	State and explain Weighted Graphs			(CO4-U)	
12.	What is the complexity bubble sort.		(CO4-U)		
13.	What does dynamic programming have in common with divide-and-conquer?		(CO1-U)		
	What is a principal difference between them?				
14.	What is maximum flow problem?			(CO1-U)	
15.	What is blocking pair in stable marriage matching problem.		(CO	15-U)	
	PART – B				
16.	(Answer any Three Questions $3 \times 10 = 30 \text{ Marks}$) Discuss the mathematical analysis of recursive algorithm using a neat				
10.	example.	CO1 - AP	P	(10)	
17.	Write a pseudo code for merge sort algorithm for sorting the following list P,R,O,G,R,A,M in alphabetical order.	CO2 - AP	P	(10)	
18.	Maximize $Z = f(x,y) = 3x + 2y$ subject to:	CO3 - U	Γ	(10)	
	$2x + y \le 18$				

$$2x + 3y \le 42$$

 $3x + y \le 24$
 $x \ge 0$, $y \ge 0$.

19. Construct state space search tree for solving the four queen's problem by back tracking and write its algorithm.

CO4 - AP

CO4 - APP (10)

20. Explain how the board's symmetry can be used to find the second solution to the four-queens problem

CO3 - App (10)