Question Paper Code: 45021

B.E. / B.Tech. DEGREE EXAMINATION, AUGUST 2021

Fifth Semester

Computer Science and Engineering

14UMA521 - DISCRETE MATHEMATICS

(Regulation 2014)

(Common to IT Branch)

Duration: 1:45 hour

Maximum: 50 Marks

PART A - (10 x 2 = 20 Marks)

(Answer any ten of the following questions)

- 1. Using truth table, show that $P \lor \neg (P \land Q)$ is tautology.
- 2. Find the recurrence relation from $y_k = A2^k + B3^k$.
- 3. Give an example of a graph which is both Eulerian and Hamiltonian.
- 4. Draw all the spanning trees of K_3 .
- 5. Let A={ a, b, c } and $\rho(A)$ be its power set. Draw the Hasse diagram of $(\rho(A), \subseteq)$.
- 6. Using truth table, show that $P \lor \neg (P \land Q)$ is tautology.
- 7. Find the recurrence relation from $y_k = A2^k + B3^k$.
- 8. Give an example of a graph which is both Eulerian and Hamiltonian.
- 9. Draw all the spanning trees of K_3 .
- 10. Is the poset(Z^+ ,/) a lattice?
- 11. Define quantifiers. What are its types.
- 12. Find the recurrence relation from $y_k = A2^k + B3^k$.
- 13. State any two properties of trees.

- 14. Draw all the spanning trees of K_3 .
- 15. Is the poset(Z^+ ,/) a lattice?

PART – B (3 x 10= 30 Marks)

(Answer any three of the following questions)

- 16. Obtain the principal disjunctive and principal conjunctive normal forms of $(P \to (Q \land R)) \land (\sim P \to (\sim Q \land \sim R)).$ (10)
- 17. Solve the recurrence relation $y_{n+2} 6y_{n+1} + 9y_n = 0$, $y_1 = 4$ and $y_0 = 1$. (10)
- 18. Find the adjacency matrix of the following graph *G*.

Find A^2 , A^3 and $Y = A + A^2 + A^3 + A^4$. What is your observation of entries in A^2 and A^3 ? (10)

- 19. Let * be defined on *R* by $x * y = x + y + 2xy \forall x, y \in R$. Check whether (*R*,*) is a monoid (or) not. Is it commutative? Also find the inverses of (*R*,*). (10)
- 20. Prove that De Morgan's laws hold good for a complemented distributive lattice. (10)