Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

B.E. / B.Tech. DEGREE EXAMINATION, AUGUST 2021

First Semester

Civil Engineering

19UPH103- ENGINEERING PHYSICS

(Common to ALL branches)

(Regulation 2019)

Duration: 1:45 hour

Maximum: 50 Marks

PART A - (10 x 2 = 20 Marks)

(Answer any ten of the following questions)

1.	Calculate the Miller Indices of a plane which cuts the intercepts of 2, 3, 4 units along x, y and z axes respectively.	CO1- R
2.	Define unit cell.	CO2- R
3.	What is holography?	
		CO3- R
4.	Mention any two physical significance of the wave function ψ .	
		CO4- R
5.	State Hooke's law.	CO5- R
6.	If λ_m is the wavelength corresponding to maximum energy and T is the absolute temperature, then according to Wien's displacement law,	CO3- R
7.	According to Planck's hypothesis, the exchange of energy between the radiation and matter is not continuous but it is limited to the integral multiple of ?	CO3- R
8.	If a particle having mass m is moving with velocity v, the deBroglie wavelength associated with the matter wave is	CO3- R
9.	Define modulus of elasticity	CO4- R
10.	Define ratio of lateral strain to linear strain	CO4- R
11	Define atomic packing factor. (R)	CO2- R
12	Mention the characteristics of laser. (U)	CO3- R

13	Calculate the de Broglie wave length of an electron moving with velocity 100 m/s.(Ap)		CO4- R
14	Write down the Max Planck's radiation formula in terms of frequency.(R)		CO5- R
15	Define modulus of elasticity		CO5- R
	PART – B (3 x 10= 30 Marks)		
	(Answer any three of the following questions)		
11.	Determine the c/a ratio and packing factor for an ideal HCP structure	CO1- U	(10)
12.	Describe the construction and working of CO2 laser with a neat diagram	CO2- U	(10)
13.	Show that the atomic packing factor for FCC is 74%.	CO1- U	(10)
14.	Deduce Schrodinger's time dependent and independent wave equations.	CO3- U	(10)
15.	Derive an expression for Young's modulus of a uniform bending of	CO4- U	(10)

rod