		Reg. No. :											
		Question Par	per (Cod	le: 9	910()2						
B.E./B.Tech. DEGREE EXAMINATION, AUGUST 2021													
First Semester													
Civil Engineering													
19UMA102- ENGINEERING MATHEMATICS I													
(Common to ALL branches)													
Dura	ation: 1.45 hrs	(Regula	tion 2	2019)		M	axim	um:	50 N	Aark	S	
PART A - (10 x 2 = 20 Marks)													
	(Answer any ten of the	he fol	llow	ing q	uesti	ions)						
1.	The product of the Eig $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is											CO	91- R
	(a) <i>abcd</i>	(b) <i>ad</i> – <i>bc</i>	(c	e) a					(d) 0			
2.	State Cayley Hamilton	Theorem?										CO	D1 R
3.	The n th derivative of y	f = f(x) at x=a is denoted	ted b	у								CO	2- R
	(a) $(y_n)_a$	(b) (y_n)	(c	c) y _a					(d) (J	$(a)^n$		
4.	If $ax^2 + 2hxy + by^2 =$	= 1 Prove that $\frac{d^2y}{dx^2} = \frac{1}{(t)^2}$	$h^2 - ab$ nx + by)3								CO	D2 R
5.	The degree of the hore $u = \frac{x^2 + y^2}{\sqrt{x} + \sqrt{y}}$ is	-										CO	93- R
	(a) 2 $\sqrt{x+y}$	(b)1	(c	:) 3/2	2				(d) 0			
6.	State Euler's theorem.											CO	03 R
7.	$\int (ax+b)^n dx$											CO	4- R
	$(a)\frac{(ax+b)^{n+1}}{a(n+1)}$	(b) $\frac{(ax+b)^{n-1}}{a(n-1)}$	(c	e) (a.	x + i	b) ⁿ			(d) <u>(a</u>	x+b) ^r an	<u> </u>	

8.	Evaluate $\int_0^{\frac{\pi}{2}} \sin^6 x dx$		CO4 R						
9.	The value of $\int_2^4 \int_1^2 \frac{dxdy}{xy}$ is	CO5- R							
	(a) log2 (b) log 2/log2 (c) 2log 2	(d) 2							
10.	Evaluate: $\int_0^a \int_0^b \int_0^c dx dy dz$.		CO5 R						
11.	Write any two properties of Eigen values.		CO1 R						
12.	Differentiate $x^3 e^{2x} \cos x$		CO2 R						
13.	Define a saddle point.		CO3 R						
14.	Show that $\Gamma(n+1) = n$		CO4 R						
15.	Change the order of integration $\int_{0}^{1} \int_{0}^{x} f(x, y) dx dy$	CO5 R							
	PART – B (3 x 10= 30 Marks)								
	(Answer any three of the following questions)								
11.	Use orthogonal transformation to reduce the quadratic form into canonical form $Q = 2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 - 2x_1x_3 - 4x_3x_2$	CO1- App	(10)						

- 12. Find the nth derivative of CO2-App (10) $\frac{1}{x^2+a^2}$
- 13. The temperature u(x, y, z) at any point in space is CO3-Ana (10) $u = 400xyz^2$. Find the highest temperature on surface of the sphere $x^2 + y^2 + z^2 = 1$.
- 14. Find the relation between Beta and Gamma function.CO4- App(10)15. Find the volume of the ellipsoidCO5- App(10)
 - $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ using integration.