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PART A - (10 x 2 = 20 Marks) 

(Answer any ten of the following questions) 

PART A - (6 x 1 = 6 Marks) 

(Answer any six of the following questions) 

1. Find the Fourier constants    for x sinx in (-π, π). 

2. Find the Fourier sine transform of 
x

1
. 

3. Find the Z transform of  ( )   {
   

  
                   

                           
 

4. Classify                                     . 

5. Derive the explicit difference equation corresponding to the partial differential equation 
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6. If f(x) = x
, 
expanded as a Fourier series in   , , find a0. 
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8. State initial and final value theorems of  transforms. 

9. Evaluate the steady state temperature of a rod of length   whose ends are kept at 30
o
 and 

40
o
 c. 
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10. Derive the explicit difference equation corresponding to the partial differential equation 
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11. Find the Fourier constants    for x sinx in (-π, π). 

12. Find the Fourier sine transform of 
x

1
. 

13. State initial and final value theorem of Z – transform. 

14. Define steady state condition on heat flow. 

15. Write down the standard five-point formula to solve the Laplace equation 

PART – B (3 x 10= 30 Marks) 

(Answer any three of the following questions) 

11.  Find the Fourier series for   21 xxxf   in   , . Deduce that                  
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12.   Find Fourier  transform of 
22xae , a>0 and hence show that 2/2xe is self-reciprocal.   
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13.  Find  (t
2
 e
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)  and  (sin
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14.  A string is stretched between two fixed points at a distance 2   apart and the points of  

  the string are given initial velocities v where, 
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, x being the distance from an end point. Find the displacement 

 of the string at any subsequent time.                (10) 

15.  Solve Uxx + Uyy = 0, over the square mesh of side 4 units satisfying the following 

 boundary conditions, by using Liebmann’s iteration method by taking h = k = 1 

(i) U(0,y) = y
2
/4 for 40  y  

(ii) U(4,y) = y
2
  for 40  y  

(iii) U(x,0) = 0 for 40  x  

(iv) U(x,4) = 8+ 2x for 40  x                   (10) 


