Reg. No.:					

CO6- AP

CO5- U

Question Paper Code: 92006

B.E./B.Tech. DEGREE EXAMINATION, AUGUST 2021

Second Semester

19UMA206- Differential Equations ,Complex analysis andTransform Techniques

Civil Engineering

	(Regulation 2019)	
	Duration: 1.45 hrs Ma	ximum: 50 Marks
	PART A (Answer Any Ten)	10*2 = 20 Marks
1.	Solve $(D^3 + D^2 + 4D + 4)y = 0$	CO1- AP
2.	Calculate Particular integral of $(D^2 + 4D + 8)y = e^{2x}$	CO1- AP
3.	Reduce the equation $(x^2D^2 + xD + 1)y = \log x$ into an ordinary difference $(x^2D^2 + xD + 1)y = \log x$	rential CO1- AP
	equation with constant co efficient.	
4.	Calculate λ such that $\overline{F} = (3x - 2y + z)\overline{i} + (4x + \lambda y - z)\overline{j} + (x - y + 2z)\overline{k}$	is CO2- AP
	solenoidal.	
5.	State stokes theorem	CO6- AP
6.	Prove that div $\vec{r}=3$ and curl $\vec{r}=0$	CO2- AP
7.	Calculate the general solution of $4\frac{\partial^2 z}{\partial x^2} - 12\frac{\partial^2 z}{\partial x \partial y} + 9\frac{\partial^2 z}{\partial y^2}$	CO3- AP
8.	Eliminate the arbitrary constants a and b from z=ax+by+ab	CO6- U
9	Solve the equation $(D-D')^3z=0$	CO3- AP
10	Expand $f(z) = \log(1+z)$ as a Taylor's series about $z = 0$	CO4- AP
11	Calculate the residue of $f(z) = \frac{e^{2z}}{(z+1)^2}$ at its pole.	CO4- AP

12

13

Define singular point

Find $L^{-1}\left[\frac{1}{s^2+6s+9}\right]$

- Find the Laplace Transform of $\frac{t}{e^t}$ CO5- AP
- 15 State the conditions under which Laplace transform of f(t) exists. CO6- AP

PART B (Answer Any Three) 3*10 = 30 Marks

- 16. Solve $(D^2 + a^2)y = \tan ax$ CO1App (10)
- 17 Verify Green's theorem for $\int_{c} (3x^2 8y^2) dx + (4y 6xy) dy$ CO2-App (10) Where C is the boundary of the region bounded by $x=y^2$, $y=x^2$.
- 18 Solve $(D^2 + 3DD' + 2D'^2)_z = \sin(2x + y) + e^{x+y}$ CO3- App (10)
- Using Contour integration, to prove $\int_{-\infty}^{\infty} \frac{\mathbf{x}^2}{(\mathbf{x}^2 + \mathbf{a}^2)(\mathbf{x}^2 + \mathbf{b}^2)} d\mathbf{x} = \frac{\pi}{\mathbf{a} + \mathbf{b}} \mathbf{a} > \mathbf{b} > \mathbf{0}$
- Solve the Laplace transform of $f(t) = \begin{cases} t, & 0 < t < a \\ 2a t, & a < t < 2a \end{cases}$ CO5- App (10)