Reg.	No.	:
------	-----	---

Question Paper Code: 53021

B.E./B.Tech. DEGREE EXAMINATION, AUGUST 2021

Third Semester

Civil Engineering

15UMA321- Transforms and Partial Differential Equations

(Common to MECH, ECE, EEE, CHEM, AGRI, BME)

(Regulation 2015)

Duration: 1:45 hour

Maximum: 50 Marks

PART A - (10 x 2 = 20 Marks)

(Answer any ten of the following questions)

1.	. List the Dirichlet's conditions on Fourier series.			
2.	If $F(s)$ is the Fourier Transform of $f(x)$. Identify $F[f(x-a)] = e^{ias} F(s)$.			
3.	Identify $z(n) = \frac{z}{(z-1)^2}$, $ z > 1$.	CO3- R		
4.	Identify the difference equation by eliminating arbitrary constants for,	CO4- R		
	$y = A2^n + Bn$.			
5.	List the three possible solutions for Two dimensional heat equation.	CO5- R		
6.	State Dirichlet's condition for a given function to expand in Fourier series.	CO1- U		
7.	State the Fourier Integral theorem.	CO2- U		
8.	Find $Z\left(\frac{1}{n}\right)$.	CO3- App		
9.	Form the PDE by eliminating the constants a and b from $(2^{2} - 2^{2})(2^{2} - 1^{2})$	CO4- R		
10.	$z = (x^2 + a^2) (y^2 + b^2).$ Write all possible solutions for one dimensional wave equation.			
	write all possible solutions for one dimensional wave equation.	CO5- U		
11.	What are the constants $a_0 \& a_n$ in the Fourier series expansion of $f(x) = x - x^3, (-\pi, \pi)$.	CO1- R		

CO2- R

CO3- R

Find the Fourier sine transform of $f(x) = \frac{1}{x}$

13.

Find the value of $Z\left(\frac{1}{n(n+1)}\right)$.

14. Form the PDE by eliminating the arbitrary constants 'a' and 'b' from $z=(x+a)^2 + (y-b)^2$. CO4- R

15

A rod 30 cm long has its ends A and B kept at 20 and 80 degree Celsius respectively. Find the steady state temperature distribution in the rod.

(Answer any three of the following questions)

16. Determine the first two harmonic of the Fourier series for the CO1-App (8) following values.

X:	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$
Y:	1.98	1.30	1.05	1.30	-0.88	-0.25

17.

Find the Fourier transform of $f(x) = \begin{cases} I - |x|, |x| \le 1 \\ 0, |x| > 1 \end{cases}$ Hence deduce

that
$$\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^2 dt = \frac{\pi}{3}$$
.

18. Solve

$$y_{n+2} + 6 y_{n+1} + 9y_n = 2^n$$
 with $y_0 = y_1 = 0$, using Z - transform.

19 Solve
$$z = px + qy + \sqrt{1 + p^2 + q^2}$$
 CO3- App (8)

20. A rod of length l has is end A & B kept qt 0^{0} C and 10^{0} C respectively CO4-App (8) until steady state condition prevail. If the temperature at B is reduced to 0^{0} C and kept so, while that of A is maintained, find the temperature u(x,t)

CO2 - App

(8)

12.