Question Paper Code: 56903A

B.E. / B.Tech. DEGREE EXAMINATION, AUGUST 2021

Sixth Semester

Chemical Engineering

15UCH603 - PROCESS INSTRUMENTATION DYNAMICS AND CONTROL

(Regulation 2015)

Duration: 1:45 hours

4

Maximum: 50 Marks

001

PART – A (10 X 2 =20 Marks) ANSWER ANY TEN QUESTIONS

1.	Define static error of an instrument.	U	CO1
2.	How humidity of gas is measured?	U	CO1
3.	Using electrical conductivity, which parameters can be measured?	AN	CO1
4.	Define rangeability of a control valve.	U	CO2
5.	Write the transfer function of a PID controller	U	CO2
6.	Write the transfer function of a PI controller	U	CO2
7.	Differentiate between servo problem and regulatory problem.	AN	CO3
8.	Explain the mechanism of control valve	U	CO3
9.	List any two advantages and disadvantages of pneumatic controller	AN	CO3
10.	What do you meant by bode diagram?	AN	CO4
11.	Define corner frequency?	R	CO4
12.	Define 'Decibels' in control theory.	U	CO4
13.	List out the advantages of a advantages of a microprocessor based controllers.	R	CO5
14.	Write notes about smith predictor control strategy	AN	CO5

15. What is an analog to digital converter?		U	CO5		
ANSWER ANY THREE QUESTIONS					
PART - B (10 X 3 = 30 Marks)					
1	Explain the various dynamic characteristics of a measuring instrument.	AN	CO1		
2	 (i) In PID controller the error is subjected to step change of magnitude 5. The integral time is τ1 1 min and derivative time τD is 0.5 min. The sensitivity of controller Kc=1. Obtain the response equation of controller. (ii) A proportional controller with an input range of 90°C -100°C for the output range of 30-90 KN/m². The error is subjected to unit impulse change. Obtain the response equation of the proportional controller. 	AP	CO2		
3	The temperature sensing element for the stirred-tank heater is a thermocouple. The manufacturer's specifications state that the thermocouple has a response time of 45 s (with the response time defined by the manufacturer as the time required for the thermocouple's reading to be 90 percent complete after a step change). Assuming that the thermocouple behaves as a first-order system, determine the transfer function for the temperature measuring element.	AP	CO3		
4	 (i) Plot the root-locus diagram for the open-loop transfer function: G = K / [(s+1) (s+2) (s+3)] (ii) Sketch the Bode plot for the following transfer function and determine gain and phase margin G(s) = 75 (1+0.2s) / [s(s² + 16s + 100)] 	EV	CO4		
5	Explain the development of closed-loop transfer functions for: cascade control system and feed forward control system.	AP	CO5		