	Reg. No. :		
	Question Paper Code: 92007		
B.E./B.Tech. DEGREE EXAMINATION, AUGUST 2021			
Second Semester			
19UMA207- Calculus, Complex Analysis and Transform Techniques			
	(Common to Agriculture, Biomedical, Biotechnology & Chemical Engineering)		
(Regulation 2019)			
	Duration: 1.45 hrs Maximum: 50 M	larks	
	PART A (Answer Any Ten) $10*2 =$	20 Marks	
1.	Solve $(D^3 + D^2 + 4D + 4)y = 0$	CO1- AP	
2.	Calculate the Particular integral of $(D^2 - 1) y = x$	CO1- AP	
3.	Compute the Wronskian of y_1, y_2 of $y'' - 2y' + y = e^x \log x$	CO1- AP	
4.	Determine the constant 'a,b,c' so that the vector $\vec{F} = (axy + bz^3)\vec{i} + (3x^2 - cz)\vec{j} + (3cz^2 - y)\vec{k}$ is Irrotational.	CO2- AP	
5.	Calculate the Directional derivative of $\boldsymbol{\varphi} = 4xz^2 + x^2yz$ at	CO2- AP	
	(1,-2,-1) in the direction $2\vec{i} + 3\vec{j} + 4\vec{k}$		
6.	If $\boldsymbol{\varphi} = \log (x^2 + y^2 + z^2)$ then Compute $\nabla \boldsymbol{\varphi}$ at (1, -1, 1)	CO2- AP	
7.	Examine the function $f(x)=e^x(\cos y+i\sin y)$ is analytic or not.	CO3- AP	
8.	State the necessary condition for $f(z)$ to be analytic.	CO6- U	
9	Calculate the fixed points of $w = \frac{z-1}{z+1}$.	CO3- AP	
10	Evaluate $\int_{C} \frac{z^2}{(z-1)^2 (z+2)} dz$ where C is $ z = 3$ using Cauchy's Integral formula.	CO4- AP	
11	Expand $\frac{1}{z-2}$ at $z=1$ in a Taylor's series.	CO4- AP	
12	Calculate the residue of $f(z) = \frac{1 - e^{-z}}{z^3}$ at $z = 0$.	CO4- AP	

13 State the conditions under which Laplace Transform of f(t) exists.

14 Evaluate
$$L^{-1}\left[\log\left(\frac{s+1}{s-1}\right)\right]$$
 CO5- AP

15 Verify the Initial value theorem for $f(t) = 1 - e^{-at}$. CO5- AP

PART B (Answer Any Three) 3*10 = 30 Marks

CO6- U

16. Solve
$$[(x+1)^2 D^2 + (x+1)D + 1]y = 4\cos[\log(x+1)]$$
 CO1App (10)

17 Verify Gauss Divergence Theorem for $\vec{F} = 4xz \vec{i} - y^2 \vec{j} + yz \vec{k}$ over the cube CO2-App (10) x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.

18 Determine the bilinear transformation that maps the points 0, -1, i in the CO3- App (10) z-plane onto the points i, 0, ∞ in the w-plane.

19 Using contour integration, Evaluate
$$\int_{0}^{2\pi} \frac{1}{13 + 5 \sin \theta} d\theta$$
 CO4- App (10)

Find the Laplace transform of $f(t) = f(t) = \begin{cases} k , 0 \le t \le a \\ -k, a \le t \le 2a \end{cases}$ CO5- App (10)