Question Paper Code: 94024

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2021

Fourth Semester

Biomedical Engineering

19UMA424 - Probability and Inferential Statistics

(Regulation 2019)

Duration: 1:45hrs

Maximum: 50 Marks

PART A 10*2 = 20 Marks

Answer any ten of the following questions

1.	A disci	rete ran		CO1-AP							
	Х	0	1	2	3	4	5				
	P(X)	a	3a	5a	7a	9a	11a				
	Calcula	ate the									
2	Evaluate the Distribution from the mean and variance of binomial distribution are 5 and 4										CO1-AP
2. 2											
3.	A random variable X follows an exponential distribution with parameter $\lambda = 1/5$ Calculate the value of mean										COI-AP
4.	Given X has an exponential distribution with parameter 1.Determine the pdf of $y=\sqrt{x}$?										CO2-AP
5.	Compute the coefficient of correlation for the following ,given The Lines of regression in a bivariate distribution are $x+9y=?$ and $y+4x=49/3$										CO2- AP
6.	Let $f(x) = \frac{1}{2}, -1 \le x \le 1$ and let $y=x^2$ calculate the value of Cov (x,y)										CO2-AP
7	Evaluate the Mean of the auto correlation function $R(\tau) = 36 + \frac{9}{1 + 8\tau^2}$										CO3- AP
8	Evaluate the autocorrelation value of the given power spectrum S_{xx} (ω)= $-\frac{4}{2}$,									xx	CO3- AP
9	$4 + \omega^{-}$ Write down the Properties of Auto Correlation function										CO3- AP
10	If $\mu_x = 0$ find μ_y										CO6- U
11	The input of the system with impulse response $h(t) = e^{-3t} U(t)$. Evaluate The value of the system transfer function.								ne	CO4-AP	
12	If $X(t)$ is the white noise process, Compute its power spectrum										CO4-AP
13	State th	e cond	ition for	the Ap	plicatio	on of C	hi square	Test			CO6-U
14			2	2							
	If S_1^2	= 8.81	and S_2	= 15.40) then	calcula	te value	of F- ratio	test.		COJ- AF
15	Give Ty	wo Typ	bes of er	rors in '	Testing	a statis	stical hyp	othesis			CO5- AP

PART B (3*10=30 Marks) (Answer any THREE Questions)

Using the probability mass function of binomial distribution, CO1 (10)16. Find the moment generating function of the distribution and hence find its Apply mean and variance from moment generating function. From the following data, Compute (i) the two regression equations (ii)The coefficient of correlation between the marks in Economics and CO2-(10)Apply Statistics (iii) the most likely marks in Statistics when marks in 17 Economics are 30

Marks Economics	in	25	28	35	32	31	36	29	38	34	32	
Marks Statistics	in	43	46	49	41	36	32	31	30	33	39	
If the Power spectral density of a WSS processes is given by											CO3-	

Apply

(10)

18

19

20

$$\mathbf{S}(\boldsymbol{\omega}) = \begin{cases} \frac{\mathbf{b}}{\mathbf{a}} \left(\mathbf{a} - |\boldsymbol{\omega}| \right) & ; & |\boldsymbol{\omega}| \le \mathbf{a} \\ \mathbf{0} & ; & |\boldsymbol{\omega}| > \mathbf{a} \end{cases}$$

Determine the auto correlation function of the Process.

CO4-(10)Using input and output system, If X (t) is a WSS process and Apply

 $Y(\mathbf{t}) = \int_{-\infty}^{\infty} \mathbf{h}(\mathbf{u}) \mathbf{X}(\mathbf{t} - \mathbf{u}) d\mathbf{u}$ then (i). $\mathbf{R}_{XY}(\tau) = \mathbf{R}_{XX}(\tau) * \mathbf{h}(\tau)$ (ii). $\mathbf{R}_{YY}(\tau) = \mathbf{R}_{XY}(\tau) * \mathbf{h}(-\tau)$

(iii).S_{XY}(
$$\omega$$
) = S_{XX}(ω) * H(ω) (iv).S_{YY}(ω) = S_{XX}(ω) * $|H(\omega)|^2$

A certain injection administered to each of 12 patients resulted in the CO5-(10)following increases of blood pressure: 5,2,8, -1,3,0,6,-2,1,5,0,4 Analyze Analyze the data, can it be concluded that the injection will be , in general , accompanied by an increase in BP?