Question Paper Code: 94B02

B.E. / B.Tech. DEGREE EXAMINATION, AUGUST 2021

Fourth Semester

Biomedical Engineering

19UBM402 - ANALOG AND DIGITAL INTEGRATED CIRCUITS

(Regulation 2019)

Duration: 1.45 hours

Maximum: 50 Marks

PART A - (10 x 2 = 20 Marks)

(Answer any TEN of the following questions)

1.	An operational amplifier has a slew rate of $25V/ms$. How long will it take for the output to change from 0 to $15 V$?	CO2 - Ap
2.	Explain the concept of virtual grounding.	CO1 - U
3.	What are the uses of instrumentation amplifier?	CO1 - U
4.	Design a first order low-pass filter at a cut-off frequency of 2 kHz with a passband gain of 2.	CO2 - Ap
5.	What is V_{UT} and V_{LT} of Schmitt Trigger?	CO1 - U
6.	Compare and Contrast the types of ADC w.r.to Speed, Cost and Size.	CO3 - An
7.	List the applications of IC555 in astable mode of operation.	CO1 - U
8.	Design the value of R required in a Monostable Multivibrator with Ton= 1.1 RC using IC 555 Timer, when C= 0.1μ F.	CO2 - Ap
9.	What are the merits of switching regulator?	CO1 - U
10.	Implement the following function with NAND gate. $Y = ABC + \overline{ABC} + B$	CO2 - Ap
11.	Differentiate combinational and sequential circuit.	CO3 - An
12.	Draw a full adder using two half adders.	CO1 - U
13.		
	Differentiate latches and flip flops with an example.	CO3 - An
14.	Differentiate latches and flip flops with an example. What is race around condition? How it is avoided?	CO3 - An CO1 - U

PART - B (3 X 10 = 30 Marks)

(Answer any THREE of the following questions)

- 16. Derive the closed loop gain of non-inverting amplifier in both ideal and practical case. CO1 U
- 17. Design a 4 bit R-2R ladder DAC and compute the analog equivalent of the binary CO2 Ap input 1011.
- 18. Differentiate and interpret between the two operating modes of 555 timer. CO3 An
- 19. Simplify the following function using Quine McCluskey method $F(A,B,C,D) = CO2 Ap \Sigma(1,3,4,5,6,7,9,12,13)$. Also obtain the NAND implementation of the simplified expression.
- 20. Design a mod-10 Synchronous binary counter using JK flip-flops. CO2 Ap