	Reg. No. :	
Question Paper Code: 53021A		
B.E./B.Tech. DEGREE EXAMINATION, MAY 2021		
Third Semester		
Civil Engineering		
15UMA321 Transforms and Partial Differential Equations		
(Common to Mechanical, ECE, EEE, Chemical, AGRI, BME)		
(Regulation 2015)		
Dura	ation: 1:45 hrs Maximum: 50 M	/larks
PART A - $(10 \text{ x } 2 = 20 \text{ Marks})$		
	Answer any ten of the following questions	
1.	List the Dirichlet's conditions on Fourier series.	CO1- R
2.	If $F(s)$ is the Fourier Transform of $f(x)$. Identify $F[f(x-a)] = e^{ias} F(s)$.	CO2- R
3.	Identify $z(n) = \frac{z}{(z-1)^2}$, $ z > 1$.	CO3- R
4.	Identify the difference equation by eliminating arbitrary constants for,	CO4- R
	$y = A2^n + Bn . $	
5.	List the three possible solutions for Two dimensional heat equation.	CO5- R
6.	What are the constants $a_0 \& a_n$ in the Fourier series expansion of $f(x) = x - x^3, (-\pi, \pi)$.	CO1-R
7.	Find the Fourier sine transform of $f(x) = \frac{1}{x}$	CO2-E
8.	Find the value of $Z\left(\frac{1}{n(n+1)}\right)$	CO3-R
9.	Form the PDE by eliminating the arbitrary constants 'a' and 'b' from $z=(x+a)^2$ + $(y-b)^2$.	CO4-E
10.	A rod 30 cm long has its ends A and B kept at 20 and 80 degree Celsius respectively. Find the steady state temperature distribution in the rod	CO5-R

- ^{11.} Find the half range sine series of f(x) = 2 in $0 < x < \pi$. CO1-E
- 12. Find the Fourier sine transform of $\frac{1}{x}$, $0 < x < \infty$. CO2-E
- 13. Solve $Z[na^n]$. CO3-R
- ^{14.} Form the PDE by eliminating *f* from $z = xy + f(x^2 + y^2 + z^2)$ CO4-E
- ¹⁵ Write all possible solutions for one dimensional wave equation. $PART - B (3 \times 10 = 30Marks)$

Answer any three of the following questions

16. Find the fourier series expansion $f(x) = \begin{cases} x, & 0 < x < \pi \\ 2\pi - x, \pi < x < 2\pi \end{cases}$ and CO1 - App (10) hence deduce that

$$\frac{1}{1^2} + \frac{1}{2^2} + \dots = \frac{\pi^2}{8}$$

•

- 17. Find the sine and cosine transform of e^{-ax} , a > 0. Hence, Evaluate CO2 -App (10) $\int_{0}^{\infty} \frac{x^{2}}{(x^{2}+a^{2})^{2}} dx \quad \text{and} \quad \int_{0}^{\infty} \frac{dx}{(x^{2}+a^{2})(x^{2}+b^{2})}.$
- 18. Solve $y_{n+2} + 6y_{n+1} + 9y_n = 2n$ given $y_0 = y_1 = 0$, using CO3- Ana (10) Z-transform.

19. Solve
$$(D^3 - 7DD'^2 - 6D'^3) z = e^{2x+y} + \sin(x+2y) + x^2y$$
. CO4- App (10)

20. An infinitely long plate of width π cms with insulated surfaces has its CO5 -U (10) temperature u = 0 on both long sides and one of the shorter sides. The temperature along the short edge y = 0 is given by u(x, 0) = 3x, 0 < x < π. Find the steady state temperature distribution u(x, y).