\mathbf{A}	Reg. No.:												
	Question	Pap	er (Cod	e: I	J 67	03						
B.E. / B.	Tech. DEGREE	EXA	MIN	ATIC	ON,	APR	IL/N	- 1AY	202	5			
	S	Sixth S	Seme	ster									
	Mech	anical	Eng	ginee	ring								
2	1UME603- FINI	ITE EI	LEM	ENT	`AN	AL.	YSIS	- 1					
	(Re	egulati	ions	2021)								
Duration: Three hours								Maximum: 100 Marks					
	Answ	ver AL	L Q	uesti	ons								
	PART A	- (10	x 1 =	= 10]	Marl	ks)							
1 is a Numerical mathematical physic		ving pı	roble	ms o	f En	igine	ering	g and	l			СО	1-U

.... temperature or fluid pressure at each nodal point is obtained.

_____ is a distributed force acting on every elemental volume of the

(b) Body force

(b) $y_{xz} = 0$

..... is/ are consider as two dimensional elements.

(a) Triangular Element (b) Beam Element

Frequency is ______ to Time period

(b) Finite Element Method

CO1-U

CO1-U

CO1-U

CO1-U

CO1-U

CO1-U

(d) None of the above

(d) Rectangular Element

(d) None of the above

(b) $\gamma_{xz} = 0$

(d) None of the above.

(b) Structural Problems

(d) None of the above.

(c) Spring

(c) Point load

(a) $\rho_z = 0$

(c) Both a &d

(b) Inversely Proportional

(d) None of the above

(a) Finite Element Analysis

(a) Non – Structural Problems

Assemblage of beams is called

(b) Bar

(c) Both a & b

(c) Both a&b

(a) Traction force

In plane strain analysis

(a) Directly Proportional

(a) Truss

(a) $\rho_z = 0$

(c) Equal

body.

5.

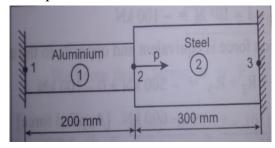
- 8. Direct Method has ______ value. CO1-U
 - (a) approximate (b) Exact (a) approximate (b) Exact
- 9. In non-structural problems _____ at each nodal point is obtained CO1- U
 - (a) Displacement (b) Temperature (c) Stress (d) Strain
- 10. Heat transfer from one body to another without any transmitting medium is known as
 - (a) Conduction (b) Convection (c) Radiation (d) None of the above

$$PART - B$$
 (5 x 2= 10 Marks)

- 11. Explain the Aspect Ratio. CO1- U
- 12. Differentiate essential and natural boundary conditions. CO1- U
- 13. State axisymmetric element. CO1- U
- 14. Write the methods of elimination of the undesirable vibrations. CO1- U
- 15. Write down the Finite element equation for 1-D Heat Conduction with free end Convection.

$$PART - C$$
 (5 x 16= 80Marks)

16. (a) The following differential equation is available for a physical CO4 -Ana (16) phenomenon


$$\frac{d^2y}{dx^2}$$
 - **10** x^2 = **5**; $0 \le x \le 1$

with boundary conditions as y(0) = 0 and y(1) = 0

By using Galerkins method of weighted residuals to find an approximate solution of the above different equation and also compare with exact solution.

Or

- (b) A simply supported beam subjected to uniformly distributed load CO4 -Ana over entire span and subjected to a point load at the centre of the span. Analyze the bending moment and deflection at mid-span by using Rayleigh Ritz method and compare with exact solution.
- 17. (a) An axial load of $4x10^5$ N is applied at 30° C to the rod as shown in CO2 -App (16) the figure. The temperature is then raised to 60° C.

For Aluminium

 $A1 = 1000 \text{ mm}^2$

 $E1 = 0.7 \times 10^5 \text{ N/mm}^2$

For Steel

 $A2 = 1500 \text{ mm}^2$

 $E2 = 2x \cdot 10^5 \text{ N/mm}^2$

Thermal coefficient = 20×10^{-6} / degCelcius

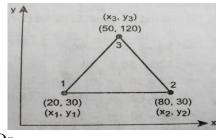
12 x 10⁻⁶/ deg Celcius

Calculate the following:

- (i) Assemble the K and F matrices iii) Nodal Displacements
- (ii) Stresses in each material point
- iv) Reactions at each nodal

Or

- (b) Derivate the stiffness matrix for One dimensional Linear Bar CO3-App (16)Element. And also list out the properties of stiffness matrix.
- 18. (a) For the plane stress element as shown in figure the nodal CO2-App (16)displacements are:

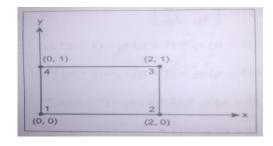

 $v_1 = 1 \text{ mm}$, $u_2 = 0.5 \text{ mm}$; $v_2 = 0 \text{ mm}$, $u_3 = 3 \text{ mm}$; $u_1 = 2 \text{ mm};$

$$v_3 = 1 \text{ mm}$$

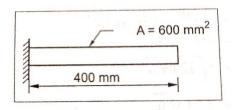
Determine the element stresses σ_x , σ_y , τ_{xy} , σ_1 and σ_2 and the principal angel Θ_n .

Let E = 210 Gpa, v = 0.25, t = 10mm.

All coordinates are in mm

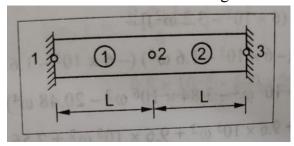


- Or
- (b) A four noded Rectangular element as shown in figure. Determine CO2 -App the following:
 - (i) Jacobian Matrix
 - (ii) Strain-Displacement Matrix.
 - (iii) Element Stresses


Take $E = 2x10^5 \text{ N/mm}^2$, v = 0.25,

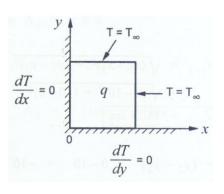
$$u = [0, 0, 0.003, 0.004, 0.006, 0.004, 0, 0]^{T}, \ \varepsilon = 0, \eta = 0$$

Assume plane stress condition.



19. (a) For the One dimensional bar having Area, $A = 600 \text{mm}^2$, Length CO4 -Ana (16) L = 400 m, Young's modulus $E = 2 \times 10^5 \text{ N/mm}^2$, Density $\rho = 0.8 \times 10^{-4} \text{ N/mm}^3$, Compare the natural frequencies of longitudinal vibration using two elements of equal length.

Or


(b) Compare the natural frequency of vibration for a beam fixed at CO4 -Ana (16) both ends. The beam has mass density ρ, modulus of elasticity E, cross sectional area A, moment of inertia I, and length 2L. The beam is discretized into two elements of length L.

20. (a) An aluminium alloy fin of 7mm thick and 50mm long protrudes CO6 -Eva (16) form a wall, which is maintained at 120°C. The ambient air temperature is 22°C. The heat transfer coefficient and thermal conductivity of the fin material are 140W/m²K and 55W/mK respectively. Evaluate the temperature distribution of fin.

Or.

(b) Evaluate the temperature distribution in a square region with uniform energy generation as shown in figure . Assume that there is no temperature variation in the z -direction. Take k=30W/cm $^{\circ}$ C, l=10cm, T=50 $^{\circ}$ C, q=100W/cm 3 .

(16)