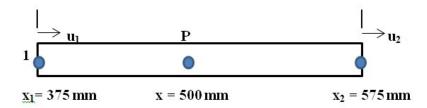
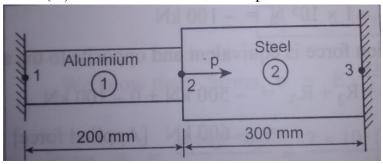
	Question Pa	per Code: 9970	2							
B.E./B.Tech. DEGREE EXAMINATION, APRIL 2025										
Seventh Semester										
Mechanical Engineering										
19UME702 – FINITE ELEMENT ANALYSIS										
(Regulation 2019)										
Duration: Three hours Maximum:										
	Answer A	LL Questions								
PART A - $(10 \times 1 = 10 \text{ Marks})$										
1 is a Numeric mathematical physics.	cal method for solv	ing problems of Eng	gineering ar	nd	CO1- U					
(a) Finite Element Analy	/sis	(b) Finite Eleme	nt Method							
(c) Both (a) & (b)		(d) none of the a	lbove							
2. The art of subdividing a sknown as	structure into a con	venient number of s	maller elen	nent is	CO1- U					
(a) Non – Structural Pro	(b) Structural Problems									
(c) Discretization of stru	(d) None of the above									
3 is a force acting at a particular point which causes displacement.										
(a) Traction force	(b) Body force	(c) Point load	1 ((d) None of	the above					
4. Assemblage of bars is ca	lled				CO1- U					
(a) Truss	(b) Beams	(c) Spring	(d) None	of the above	e					
5. Linear Strain Triangular	Element has	_ number of nodes.			CO1- U					
(a) 3	(b)6	(c)12		(d) 24						
6. In plane strain analysis					CO1- U					
(a) $\rho_z = 0$	(b) $\gamma_{xz} = 0$	(c) $\gamma_{yz} = 0$		(d) All of t	the above					
7 A motion which repeats i	itself after equal int	terval of time is calle	ed		CO1- U					

(b) Frequency (c) Counter flow


(d) Damping

(a) Cycle

Reg. No.:

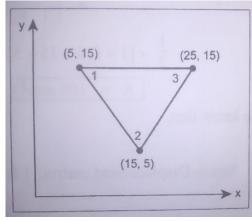

8	3 The causes of vibration is/are						СО	1- U				
	(a) W	inds	(b) Earthquakes		(c) Elastic Nature	e (d)	(d) All of the above					
9	In nor	non-structural problems at each nodal point is obtained CO						1- U				
	(a) Di	splacement	(b) Temperature	;	(c) Stress	(d)	(d) Strain					
10		is imag	inary line that con	nects a	series of points		CO	1- U				
	(a) Path Line (b) Stream Line (c) Inviscid Flow (d)						None of the a	bove				
PART - B (5 x 2= 10Marks)												
11	CO1- U											
12	12 Explain Degrees of freedom.						CO1- U					
13	13 Write down the stress-strain relationship matrix for plane strain condition.							J				
14	14 State difference between Direct and Iterative methods for solving system of equations.											
15	5 Write down the expression for stiffness matrix in 2D fluid mechanics.						CO1- U	J				
PART – C (5 x 16= 80 Marks)												
16	phenomenon. $\frac{d^2y}{dx^2} + 50 = 0 \qquad , 0 \le x \le 10$ and the trial function is $y = a_{IX}(10-x)$ with boundary conditions as $y(0) = 0 \text{ and } y(10) = 0. \text{ Find the value of the parameter } a_I \text{ by the following methods.}$ (i) Point Collocation Method (ii) Sub-domain Collocation Method (iii) Least Squares Method (iv) Galerkin's Method Or											
	(b)	concentrated	B of span L simp load W at the certing Rayleigh Rit	ntre C. A	Analyze the deflec	tion at mid-	CO4- Alla	(10)				
17	(a)	$750 \text{mm}^2 \text{ and } u_2 = 0.625 \text{mm}^2$		is is 2 X	10^5 N/mm^2 . If u_1		CO2- App	(16)				

(v) Element Stiffness Matrix [K]

Or

- (b) An axial load of $4x10^5$ N is applied at 30° C to the rod as shown in CO2-App (16) the figure. The temperature is then raised to 60° C. Calculate the following:
 - (i) Assemble the K and F matrices
 - (ii) Nodal Displacements
 - (iii) Stresses in each material
 - (iv) Reactions at each nodal point

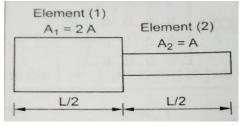
18 (a) For the plane strain element as shown in figure the nodal displacements are


CO2- App (16)

$$u_1 = 0.005 \text{ mm}; \quad v_1 = 0.002 \text{ mm}$$

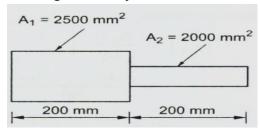
$$u_2 = 0 \text{ mm}; v_2 = 0 \text{ mm}$$

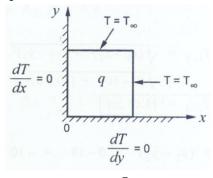
$$u_3 = 0.005 \text{ mm}; \quad v_3 = 0 \text{ mm}$$


Determine the element stresses σ_x , σ_y , τ_{xy} , σ_1 and σ_2 and the principal angel Θ_p . Let E=70Gpa, v=0.3 and use unit thickness. All coordinates are in mm

- (b) (i) Evaluate the integral $\int_{-1}^{1} \frac{\cos x}{1-x^2} dx$ by applying 3 point Gaussian Quadrature. CO2- App (8+8)
 - (ii) Evaluate the integral $\int_{-1}^{1} (2 + x + x^2)$ dx and compare with exact solution.

Or


19 (a) Compare the natural frequencies of longitudinal vibration of the CO4- Ana (16) unconstrained stepped bar as shown in the figure.


Or

(b) Compare the eigen values and frequencies for the stepped bar as CO4- Ana (16) shown in the figure.

Take, Young's modulus $E = 2 \times 10^5 \text{ N/mm}^2$, Unit weight Density = $0.8 \times 10^{-4} \text{ N/mm}^3$

20 (a) Evaluate the temperature distribution in a square region with CO6-Eva (16) uniform energy generation as shown in figure. Assume that there is no temperature variation in the z-direction. Take k=30W/cm°C, l=10cm, T=50°C, q=100W/cm³.

Or

(b) A steel rod of diameter d= 2 cm, Length L=5 cm and thermal CO6-Eva (16) conductivity k = 50W/m°C is exposed at one end to a constant temperature of 320°C. The other end is in ambient air of temperature 20°C with a convection coefficient of h = 100 W/m²°C. Evaluate the temperature at the midpoint of the rod.