Reg. No. :												
------------	--	--	--	--	--	--	--	--	--	--	--	--

CO1- U

Question Paper Code:R4704

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2025

Fourth Semester

Mechanical Engineering

R21UME404- MECHANICS OF MATERIALS

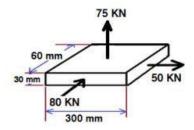
(Regulations R2021)

Duration: Three hours Maximum: 100 Marks

State Hooke's law with equation.

Answer ALL Questions

PART A - $(10 \times 2 = 20 \text{ Marks})$


	1		
2.	Determine the Poisson's ratio and bulk modulus of a material for which young's modulus is 1.2 x 10 ⁵ N/mm ² and modulus of rigidity is 4.8 x 10 ⁴ N/mm ² .	CO1-App	
3.	List out the various types of supports.	CO1- U	
4.	Draw the shape of the bending moment diagram for a uniform cantilever beam carrying a uniformly distributed load over its length		
5.	Summarize the assumptions made in torsion equation.		
6.	Explain polar modulus.	CO1- U	
7.	Explain the effective length of a column.	CO1- U	
8.	Outline Rankine's formula for critical load.	CO1- U	
9.	A cylindrical pipe of diameter 1.5 m and of thickness 1.5 cm is subjected to internal fluid pressure of 1.2 N/mm ² . Determine the longitudinal stress developed in the pipe.	CO2-App	

10. Give the expression for the volumetric strain of a thin cylindrical shell CO1-U subjected to internal presser 'P'.

$PART - B (5 \times 16 = 80 \text{ Marks})$

11. (a) A reinforced concrete column 500 mm x 500 mm in section is CO2-App (16) reinforced with 4 steel bars of 25 mm diameter; one in each corner, the column is carrying a load of 1000 kN. Find the stresses in the concrete and steel bars. Take E for steel =2.10 x 10⁵ N/mm² and E for concrete = 0.14 x 10⁵ N/mm².

(b) A steel plate 300mm long, 60 mm wide and 30 mm deep is acted CO2- App upon by the forces shown in figure. Determine the change in volume. Take $E = 200 \text{ kN/mm}^2$ and Poisson's ratio = 0.3.

12. (a) A cantilever of length 3 m carries a uniformly distributed load of CO2- App (16) 1.5 kN/m over a length of 2 m from the free end. Draw the Shear force and Bending Moment Diagrams for the beam.

Or

- (b) A simply supported beam of span 10 m carries a concentrated CO2- App load of 10 KN at 2 m from the left support and a UDL of 4 KN/m over the entire length. Sketch the Shear force and Bending Moment Diagrams for the beam.
- 13. (a) A solid circular shaft transmits 75 kW power at 200 rpm. CO2-App (16) Calculate the shaft diameter, if the twist in the shaft is not to exceed 1degree in 2 m length of the shaft, and shear stress is limited to 50 N/mm^2 . Take $C = 1 \times 10^5 \text{ N/mm}^2$.

Or

- (b) A composite shaft consists of a steel rod of 60 mm diameter CO2-App (16) surrounded by a closely fitting tube of brass. Find the outside diameter of the brass tube when a torque of 1 kN-m is applied on the composite shaft and shared equally by the two materials. Take C for steel as 84 GPa and C for brass as 42 GPa. Also determine the common angle of twist in a length of 4 metres.
- 14. (a) A steel rod 4m long and 40 mm diameter is used as a column. CO3- App Determine the crippling load by using Euler's formula when the given column is used with the following conditions. Take $E=2 \times 10^5 \text{ N/mm}^2$.
 - (i) Both ends are hinged
 - (ii) One end is fixed and the other end is free
 - (iii) Both ends are fixed
 - (iv) One end is fixed and other end is hinged.

Or

2

- (b) A hollow cylindrical cast iron whose internal diameter is 0.6 CO3-App (16) times the external diameter is 5 m long with both the ends being fixed. If the column carries a safe load of 200 x 10^3 N with a factor of safety of 6, find the minimum diameter of the column. Take $\sigma_c = 550$ N/mm², a = 1/1600.
- 15. (a) A cylindrical shell 1 m internal diameter and 15 mm wall CO3-App (16) thickness is 3 m long. Calculate the circumferential and longitudinal stresses induced and also the changes in the dimensions of the shell if it is subjected to an internal pressure of 1.5 N/mm^2 . Take $E = 2 \times 10^5 \text{ N/mm}^2$ and 1/m = 0.3.

Or

- (b) A boiler shell is to be made of 15 mm thick plate having a CO3-App limiting tensile stress of 120 N/mm². If the efficiencies of the longitudinal and circumferential joints are 70 % and 30 % respectively. Determine:
 - (i) The maximum permissible diameter of the shell for an internal pressure of 2 N/mm² and
 - (ii) Permissible intensity of internal pressure when the shell diameter is 1.5 m.

(16)