Reg. No.:						

Question Paper Code: U2604

M.E. DEGREE EXAMINATION, APRIL / MAY 2025

Second Semester

Structural Engineering

21PSE204 - STABILITY OF STRUCTURES

(Regulations 2021)

Duration: Three hours Maximum: 100 Marks

Answer All Questions

 $PART - A (5 \times 20 = 100 \text{ Marks})$

1. (a) Derive an expression for critical load of a cantilever column using CO2- App (20) equilibrium approach.

Or

- (b) Determine the critical load of a column which is hinged at both CO2- App (20) the ends using equilibrium approach
- 2. (a) Examine the critical load (using energy method) of aH-H column CO3-Ana (20) and F-Fhaving uniform varying moment of inertia.

Or

- (b) Compare Rayleigh reitz method and Galerkins Method of CO3-Ana (20) analysis and bring out the salient features.
- 3. (a) Illustrate the approximate methods used analysis of beam column CO3-Ana (20) in the stability analysis with their merits with real-time examples.

Or

(b) Derive the differential equation governing the maximum CO3-Ana (20) deflection of a beam-column subjected to a central point load.

Assume the beam-column has both bending and axial compression effects, and consider the implications of both the axial load and the point load on the overall deflection.

4. (a) Illustrate the modes of Buckling in frames with real-time CO1- App (20) examples

Or

- (b) Illustrate Matrix approach for buckling of frames with real-time CO1- App (20) examples.
- 5. (a) Derive and discuss the governing equations for the stability of CO4- Ana (20) thin plates subjected to plane (in-plane) loading. How do the boundary conditions, material properties, and plate geometry influence the critical buckling load under plane loading?

Or

(b) Calculate the critical buckling load for a thin rectangular plate CO4- Ana (20) with simply supported edges under uniform axial compression.

Assume linear elasticity and small deflections.