Reg. No.:												
-----------	--	--	--	--	--	--	--	--	--	--	--	--

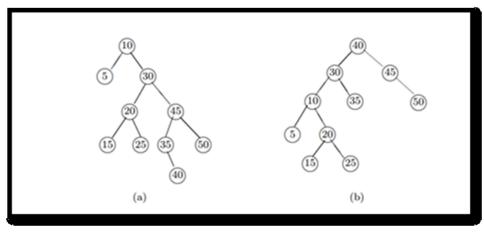
Question Paper Code: U1301

M.E. DEGREE EXAMINATION, APRIL/MAY 2025

First Semester

Computer Science and Engineering

21PCS101 - ADVANCED DATA STRUCTURES AND ALGORITHMS


(Regulations 2021)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

	PART A - $(10 \times 2 = 20 \text{ Marks})$					
1.	Describe elementary Data Structures					
2.	List out the applications of Binary Search Tree.					
3.	List out the applications of Heap.					
4.	Differentiate Min heap and max Heap.					
5.	Generate the hash value for the given sequence of keys 50, 700, 76, 85, 92, 73, and 101 with the hash function as "key mod 7". Construct the hash table by inserting the following keys 12, 18, 13, 2, 3, 23, 5 and 15 into an initially empty hash table of length 10 using both the hash table techniques. Define graph. How it differs from Tree?					
6.						
7.						
8.	What are all the methods used to represent Graph and give the advantages and Disadvantages of both representation.					
9.						
10.	What is the best algorithm used to solve travelling Salesman Problem? Justify your answer.	CO1 - U				
	PART B - $(5 \times 16 = 80 \text{ Marks})$					
11.	(a) Assume that the tree given in (b) is obtained from the tree in (a) by doing CO2 a splay tree operation. What are the various possible splay tree	- App (16)				

1 operations, such as insert (k), delete (k), etc., on tree in (a) that lead to the tree in (b)?

Oı

- (b) Show the results of inserting the keys F, S, Q, K, C, L, H, T, V, W, M, CO2 -App (16) R, N, P, A, B, X, Y, D, Z, E in the sequence of order with minimum degree 2. Show the results of deleting C, P, and V from the tree and Write the procedure for insertion and Deletion operations.
- 12. (a) Assume that items a through m with keys 3,5,2,7,4,10,8,6,3,6,1,2,9 CO2 App (16) inserting in alphabetical order into a Fibonacci heaps. Show the heap following the insertions. Then do a deletemin() and show the resulting heap state. Write for insertion and deletion of Fibonacci heap.

Or

- (b) Construct the Binomial heap for the following sequence of numbers CO2 App (16) 7,2,4,17,1,11,6,8,15,10,20. Also apply the operation of extracting the minimum key in the resulting binomial Heap. Write the procedure for insertion and deletion of binomial heap.
- 13. (a) Explain in detail Collision Resolution Techniques with suitable example. CO1 U (16)
 Or
 - (b) Briefly discuss about concurrent heap with suitable example CO1- U (16)
- 14. (a) Select suitable Greedy Paradigm Techniques to construct MST with an CO1 U (16) example.

Or

- (b) Explain in detail Edmond-Karp maximum-flow algorithm with suitable CO1 U (16) example.
- (a) Consider this minimal vertex cover problem: given a graph G = (V, E), CO2 App (16) find a minimal set of vertices S such that for every edge (u,v) ∈ E, u or v (or both) are in S.

Or

(b) A sequence of n candidates for a position – Each has a distinct quality CO2 –App (16) rating that we can determine in an interview.

Given data:

We know total ranking of interviewed candidates, but not with respect to candidates left to interview

Calculate the probability to hire the best qualified candidate given k?

Calculate the best value of k to maximize above probability?

Discuss in detail online Hiring problem