Reg. No. :

Question Paper Code:U5312

M.E. DEGREE EXAMINATION, APRIL / MAY 2025

Elective

Computer Science and Engineering

21PCS512- DEEP LEARNING TECHNIQUES

(Regulations 2021)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

	PART A - $(10 \times 2 = 20 \text{ Marks})$							
1.	What is the role of regularization in deep learning models?	CO1- U						
2.	What is a feed forward deep network?	CO1- U						
3.	What is the main difference between recurrent neural networks (RNNs) and feed forward networks?	CO1- U						
4.	Apply average pooling with a 2x2 filter on a 4x4 matrix of your choice and show the result.	CO2- App						
5.	What is the difference between Bayesian Networks and Markov Random Fields?	CO1- U						
6.	How do Monte Carlo methods assist in probabilistic inference?	CO1- U						
7.	What role does Gibbs Sampling play in training an RBM?	CO1- U						
8.	is the significance of energy-based models in Boltzmann Machines?	CO1- U						
9.	Apply a default baseline model to classify a sample dataset and calculate the baseline accuracy.	CO2- App						
10.	What factors determine whether more data should be gathered for a machine learning model?	CO1- U						

 $PART - B (5 \times 16 = 80 \text{ Marks})$

11. (a) Explain the differences between Supervised and Unsupervised CO1- U

Learning with suitable examples (16)

	(b)	Using an unsupervised learning approach, cluster customer transaction data to identify spending patterns. Explain the methodology and the impact of different hyper parameter settings	CO1- U	(16)
12.	(a)	Implement an approximate search algorithm using a deep learning model to retrieve similar sentences from a large text corpus. Given a query sentence, the model should return the top 5 most similar sentences. Compare the efficiency of approximate search with traditional keyword-based search methods. Explain your choice of neural network architecture. Or	CO1- U	(16)
	(b)	Explain the Convolution Operation in Convolutional Neural Networks (CNNs). How does it help in extracting features from input data?	CO1- U	(16)
13.	(a)	Explain the concept of Structured Probabilistic Models. How these models are different from unstructured models, and what are their key advantages?	CO1- U	(16)
		Or		
	(b)	Explain how probabilistic graphical models can be used to infer missing data. Implement a structured approach and compare it with an unstructured learning method.	CO1- U	(16)
14.	(a)	Apply deep Boltzmann machine training procedure used to classify the MNIST dataset Or	CO2- App	(16)
	(b)	Apply a Boltzmann Machine to predict stock market trends based on historical data. Explain how the model learns temporal dependencies and compare it with LSTMs.	CO2- App	(16)
15.	(a)	Explain both a simple logistic regression model and a deep neural network for sentiment classification in NLP. Compare their performance using various evaluation metrics and explain under what conditions a baseline model might be preferable. Or	CO1- U	(16)
	(b)	Describe the steps needed to measure the performance of a deep learning model with example	CO1- U	(16)