	Reg. No.:												
--	-----------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: U2209

M.E. DEGREE EXAMINATION, APRIL/MAY 2025

Second Semester

Communication Systems

21PCM209- ADVANCED WIRELESS COMMUNICATION

(Regulations 2021)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART - A $(5 \times 20 = 100 \text{ Marks})$

- 1. (a) (i) Elaborate on the term "Electromagnetic waves propagates CO1-U (8) through environments".
 - (ii) "All the transmitted and received signals we consider are real". CO2-App (12) Develop transmit and receive signal model for wireless communication channels by assuming complex frequency response.

Or

- (b) (i) Consider a signal s(t) transmitted through time varying channel. CO1- U

 Derive an expression for free space path loss gain.
 - (ii) Apply the concept of propagation of EM signal in wireless CO2-App (12) communication channel, develop two ray model in which a single ground reflection dominates the multipath effect. Derive an expression for the transmitted and received signal power
- 2. (a) Consider a flat fading channel with i.i.d. channel gain g[i], with a CO4-Ana (20) bandwidth of 30KHz and three possible received SNRs: γ_1 =0.833 with p(γ_1)=0.1, γ_2 =83.33 with p(γ_2)=0.5 and γ_3 =333.3 with p(γ_3)=0.4.
 - (i) Find the ergodic capacity of this channel assuming both transmitter and receiver have instantaneous channel side information.
 - (ii) Find the zero-outage capacity of the channel.

- (b) Consider a time-invariant frequency selective block fading channel CO4-Ana consisting of three subchannels of bandwidth B=1MHz. The frequency response associated with each channels is H₁=1, H₂=2 and H₃=3. The transmit power constraint is P=10mW and the noise PSD is N0=10-9 W/Hz. Find the Shannon capacity of this channel and the optimal power allocation that achieves this capacity.
- 3. (a) "In receiver diversity the independent fading paths associated with CO3- App (20) multiple receive antennas are combined to obtain a resultant signal that is then passed through a standard demodulator." Analyze the receiver diversity combining techniques.

Or

- (b) "Selection combining for systems that transmit continuously may CO3- App (20) require a dedicated receiver on each branch to continuously monitor branch SNR." Name the combining technique which avoids the need for a dedicated receiver to monitor the SNR and Analyze its outage probability Pout.
- 4. (a) Explain in detail about Spatial Multiplexing and BLAST CO1-U (20) Architecture with appropriate diagrams.

Ot

- (b) Discuss about rank and determinant criterion for space time coding CO1-U and explain the concept of space time trellis and block codes.
- 5. (a) A multiuser channel refers to any channel that must be shared CO5-Ana among multiple users. Analyze two different types of multiuser channels namely the uplink channel and the downlink channel.

Or

- (b) Consider an AWGN broadcast channel with total transmit power CO5-Ana (20) P=10mW, n1=10⁻⁹ W/Hz, n2=10⁻⁸ W/Hz and B=100Hz. Suppose user 1 requires a data rate of 300Kbps.
 - a) Find the rate that can be allocated to user 2 under fixed power time division, equal bandwidth frequency division and superposition coding.
 - (b) Find the sum-rate capacity of the above system