Reg. No.:

Question Paper Code: U2208

M.E. DEGREE EXAMINATION, APRIL/MAY 2025

Second Semester

Communication Systems

21PCM208- AI FOR COMMUNICATION

(Regulations 2021)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART - A $(5 \times 20 = 100 \text{ Marks})$

1. (a) Describe the significance of AI in communication systems with CO1-U suitable examples. (20)

Or

(b) Explain the evolution of AI and its key milestones.

- CO1- U (20)
- 2. (a) How can constraint satisfaction problems (CSP) be applied to CO2-App optimize communication networks? Provide examples to illustrate their implementation.

Or

- (b) Apply informed and uninformed search strategies to optimize a CO2-App (20) communication system. Provide real-world examples to demonstrate their implementation and effectiveness. Swapping of halves of the block
- 3. (a) Design a first-order logic (FOL) knowledge base to model an AI- CO3- App (20) driven communication system that includes:
 - Devices (e.g., Mobile, Router, Server)
 - Communication types (e.g., Wired, Wireless)
 - Data transmission rules (e.g., "A device can send data if it is connected to a network")
 - Security policies (e.g., "Only authenticated users can access private networks")

Do the following tasks:

- a) Define predicates and functions to represent the system.
- b) Write at least five FOL statements modeling the rules.
- c) Use forward chaining or backward chaining to infer whether a mobile device can send data over a secured network.

Or

(b) Consider a wireless communication network where multiple users CO3- App (20) share bandwidth. The system must allocate bandwidth based on user priority, data load, and available spectrum.

Do the following tasks.:

- a) Formulate this as a Constraint Satisfaction Problem (CSP) by defining:
- Variables (e.g., user devices, frequency channels)
- Domains (e.g., available bandwidth)
- Constraints (e.g., "No two users in the same region can use the same frequency simultaneously")
- b) Apply backtracking search and local search to find an optimized bandwidth allocation.
- c) Explain how machine learning (e.g., reinforcement learning) can improve CSP-based resource allocation.
- 4. (a) Analyze how linear regression is used in signal prediction for CO4- Ana (20) communication systems and evaluate its effectiveness in minimizing transmission errors.

Or

- (b) Compare and analyze the role of logistic regression and decision CO4- Ana (20) trees in classification tasks within wireless communication networks. Which method provides better accuracy and why?
- 5. (a) Analyze the application of AI in the Internet of Things (IoT) and CO5-Ana (20) smart cities for effective communication.

Or

(b) Analyze the impact of AI on the development of 6G and future CO5-Ana (20) wireless communication technologies, highlighting its role in network optimization, automation, and intelligent resource management.