,	٨	
_/		١.
r	7	A

Question Paper Code: R2804

B.E. / B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Second Semester

Information Technology

R21UIT204 – DIGITAL PRINCIPLES AND SYSTEM DESIGN

(Regulations R2021)							
Duration: Three hours Maximum: 10							
Answer ALL Questions							
PART A - $(10 \times 1 = 10 \text{ Marks})$							
1.	What is the base conversion of decimal number for the following Binary CO2-Ap number: 1101001?						
	(a) $(10)_2$	(b) $(10)_5$	(c) $(10)_6$	(d) $(10)_7$			
2.	What are all the Uni	versal Gates			CO1- U		
	(a) AND,OR	(b) NAND ,NOR	(c) AND,NOT	(d) NOR,	AND		
3.	The Simplified expr	ession of full subtractor	Borrow is	_	CO1-U		
	(a) $B_{out} = \bar{A}B_{in} + \bar{A}B + BB_{in}$ (b) $B_{out} = BA_{in} + BB_{in}$		(b) $B_{out} = BA_{in} + BB +$	$-BA_{in}$			
	(c) B _{out} =AB _{in} +BA+AAin		(d) $AB_{in}+BB_{in}+BB_{in}$				
4.	Convert Gray code	1110 to binary	<u> </u>		CO2-App		
	(a) 1011	(b) 1111	(c) 1010	(d) 1100			
5.	How many NOT multiplexer	gates are required for	or the construction	of 4 to 1	CO2-App		
	(a)1	(b) 2	(c) 3	(d) 4			
6.	How many selection lines would be required for an 8-line-to-1-line MUX?				CO1-U		
	(a) 2	(b) 3	(c) 4	(d) 8			
7.	The input values for J-K flipflop to go to Toggle state are CO1-						
	(a) 00	(b) 01	(c) 10	(d) 11			

8. The main difference between a register and a counter is CO1-U (a) A register has no specific sequence of states (b) A counter has no specific sequence of states (c) A register has capability to store one bit of information but counter has n-bit (d) A register counts data Asynchronous sequential logic circuit not uses CO1-U (a) inputs (b) outputs (c) clock pulses (d) time 10. Which one is the suitable to detecting the hazard in circuit? CO1-U (a) Karnaugh map (b) Boolean expression (c) Logic gates (d) None of these PART - B (5 x 2= 10 Marks) 11. Convert the given number from Hexadecimal to binary: 9AF₁₆ CO2-App Draw the truth table for half-adder circuit. CO2-U 12. 13. Mention the uses of Decoder. CO1-U 14. Draw the Excitation table of SR flip-flop CO2-U 15. Explain about race condition CO1-U $PART - C (5 \times 16 = 80 \text{ Marks})$ 16. (a) i) Y = AB + A(B+C) + B(B+C)CO2-App (16) ii) $Y = \overline{AB}(\overline{A} + B)(\overline{B} + B)$ iii) $\overline{Y} = \overline{A}\overline{C} + \overline{B}\overline{C} + B\overline{C} + ABC$ iv) $\overline{Y} = A + \overline{A}B + \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C}D$ Or (b) Simplify the following Boolean function by using the Tabulation method CO2-App (16) F = m(0, 1, 2, 8, 10, 11, 14, 15)17. (a) Design a circuit for BCD addition CO1-U (16)Or

(b) Design a logic circuit to convert BCD to gray code

(16)

CO1-U

18. (a) Implement the following function using DEMUX. $F1(A,B,C)=\sum(0,3,7)$ $F2(A,B,C)=\sum(1,2,5)$

CO2-App (16)

 O_1

(b) Design a 2 bit comparator using basic gates

CO2-App (16)

19. (a) Explain the operation of JK flip-flops and SR Flip flops with suitable CO1-U (16) diagrams?

Or

- (b) Design a MOD5 synchronous counter using JK flip-flops and CO1-U (16) implement it. Also draw the timing diagram.
- 20. (a) Design an asynchronous sequential circuit with two inputs X and Y CO2-App (16) and with one output Z. Whenever Y is 1, input X is transferred to Z. When Y is 0, the output does not change for any change in X.

Or

(b) Give hazard– free realization for the following Boolean function $F(A,B,C,D) = \sum (1,3,5,7,9,14,15)$

CO2-App (16)

 $F(A,B,C,D) = \sum (1,5,7,14,15)$