Reg. No.:			

Question Paper Code:R2I04

B.E./B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Second Semester

CSE (Internet of Things)

R21UIO204- DIGITAL SYSTEM DESIGN

(Regulations R2021)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 2 = 20 \text{ Marks})$					
State De-Morgan's theorem.	CO1- U				
Express the function $Y = A + BC$ in canonical POS.	CO2-App				
Why full adder is efficient than the half adders? Justify.	CO3-Ana				
Determine the Boolean expression for a half adder.	CO2-App				
Write the characteristics table of a D flip flop.	CO1- U				
The clock frequency is 2MHz. How long will it take to serial load the eight shift register?	CO2-App				
How can a race in digital circuits can be avoided?	CO2-App				
What is the most important consideration in making state assignments for asynchronous network?	CO1- U				
How does the architecture of a PAL differ from a PROM?	CO3-Ana				
Define Cache memory.	CO1- U				
	State De-Morgan's theorem. Express the function Y = A+ BC in canonical POS. Why full adder is efficient than the half adders? Justify. Determine the Boolean expression for a half adder. Write the characteristics table of a D flip flop. The clock frequency is 2MHz. How long will it take to serial load the eight shift register? How can a race in digital circuits can be avoided? What is the most important consideration in making state assignments for asynchronous network? How does the architecture of a PAL differ from a PROM?				

PART – B (5 x 16= 80 Marks)

11. (a) For the given truth table ,write the logical expression in the CO2-App (16) canonical SOP & POS

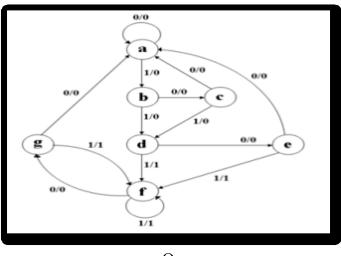
A	В	C	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

(b) Write the minimized Boolean expression for the function using K- CO2- App (16) map

 $F(w,x,y,z) = \sum m(0,1,2,4,5,6,8,9,12,13,14).$

- 12. (a) Write a brief note on the following combinational circuits:
 - CO1- U
- (8)

(8)


- (i) Full adder
- (ii) Full subtractor

CO1- U

Or

(b) Explain in detail the BCD Adder.

- CO1-U (16)
- 13. (a) Analyze state reduction if possible after designing a clocked CO2-App (16) synchronous sequential logic circuit using JK flip flops for the following state diagram. Use state reduction if possible.

- Or
- (b) Design a synchronous counter using JK flipflops to count the CO2-App (16) sequence 0,1,2,4,5,6,0,1,2.Use State diagram and state table.
- 14. (a) Write a HDL structural description of a full adder using two CO2-App (16) half adder and OR Write the simulation waveform

Oı

(b) An asynchronous sequential circuit is described by the following CO2-App excitation and output function: $Y = X_1X_2 + (X_1 + X_2)Y$,

$$Z = Y$$

- (i) Draw the logic diagram of the circuit
- (ii) Derive the transition table, output map and describe the CO2-App (8) behavior of the circuit

15. (a) Differentiate static and dynamic RAM. Draw the circuits of one CO1-U cell of each and explain its working principle.

Or

(b) Write a detailed notes on:

(i) PAL
(a) Differentiate static and dynamic RAM. Draw the circuits of one CO1-U (16)
(b) CO1-U (8)

(ii) FPGA

CO1- U

(8)