D N						
Reg. No.:						

Question Paper Code: R4M21

B.E./B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Fourth Semester

Computer Science and Engineering

R21UMA421- TRANSFORMS AND DISCRETE MATHEMATICS

(Common to IT, CSE (CI), CSE (AIML) & CSE(SC) Engineering branches)

(Regulations R2021)

Duration: Three hours Maximum: 100 Marks

Dur	ation. Timee nours	Allinaili.	10014	Iuiks		
	Answer ALL Questions					
	PART A - $(10 \times 2 = 20 \text{ Marks})$					
1.	1. Derive R from the premises $P \rightarrow Q$, $Q \rightarrow R$ and P					
2.	2. Define tautology and contradiction.					
3.	3. Compute the particular solution of the recurrence relation $a_n - 6a_{n-2} = 12n$.					
4.	4. How many different word are there in the word MATHEMATICS					
5. Define Group and give an example.				CO6- U		
6. Find the order of all the element in (Z_3, \oplus_3)				CO3- App		
7. Define Fourier transform pair.				CO 6-U		
8. Find the Fourier sine transform of e^{-ax} , $a > 0$				CO 6- U		
9. Determine the Z – Transform of $z(n)$.				CO 6- U		
10.	10. Find $Z\{\sin(n\pi/2)\}$.					
	PART – B (5 x 16= 80 Marks)					
11.	(a) (i) Calculate PCNF and PDNF for $P \to ((P \to Q) \land \neg (\neg Q \lor \neg P))$	CO1 A	App	(8)		
	(ii) Using the rules of inference derive & using CP Rule.	CO1 A	App	(8)		
	$P \to (Q \to R), \ Q \to (R \to S) \Rightarrow P \to (Q \to S)$ Or					
	(b) (i) Prove the following. $P \to (Q \land R), (Q \lor S) \to U, P \lor S \Rightarrow U$	CO1 A	Арр	(8)		

method

show

to

that CO1 App

(8)

(ii)

Use

the indirect

 $R \rightarrow \neg Q, R \lor S, S \rightarrow \neg Q, P \rightarrow Q \Rightarrow \neg P$

- 12. (a) (i) Calculate the number of positive integers not exceeding 1200 CO2-App (8) that are divisible by 2,3,5 or by 7
 - (ii) Solve $a_n 4a_{n-1} + 4a_{n-2} = 2^n$, $a_0 = 11$, $a_1 = 15$ CO2 App (8)

Oı

- (b) (i) How many prime numbers not exceeding 100 are there? CO2- App (8)
 - (ii) Using generating functions Solve $a_n = 5a_{n-1} + 3^n$, $a_0 = 3$ CO2- App (8)
- 13. (a) (i) State and prove Lagrange's theorem. CO3 U (8)
 - (ii) Prove that (G,*) is abelian if and only if $(a * b)^{-1} = a^{-1} * b^{-1}$ CO3 U (8)

Or

- (b) (i) A Group G is abelian iff $(a*b)^n = a^n*b^n$ CO3 U (8)
 - (ii) Prove that the union of two subgroup of G need not a sub CO3 U group. (8)
- 14. (a) Show that the Fourier Transform of CO4 App (16)

$$f(x) = \begin{cases} a - |x| & \text{if } |x| \le a \\ 0 & \text{if } |x| > a \end{cases} \text{ is } \sqrt{\frac{2}{\pi}} \left[\frac{2 \sin^2 \frac{s}{2}}{s^2} \right] \text{ and hence evaluate}$$

(i) $\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{4} dt = \frac{\pi}{3} \quad (ii) \int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{2} dt = \frac{\pi}{2}$

Oı

- (b) (i) Show that the Fourier transform of CO4 App (8) $e^{-\frac{x^2}{2}} \text{ is } e^{-\frac{s^2}{2}}$
 - (ii) Evaluate using transforms method $\int_{0}^{\infty} \frac{x^{2} dx}{(x^{2} + 4)(x^{2} + 9)}$ CO4 App (8)
- 15. (a) (i) Find the Z-transform of CO5 App (8)

 $\frac{2n+3}{(n+1)(n+2)}$

(ii) Find $Z[r^n \cos \theta]$ and $Z[r^n \sin \theta]$ CO5 App (8)

Or

(b) (i) Using Convolution theorem find

$$Z^{-1} \left[\frac{14z^2}{(7z+4)(2z+1)} \right]$$

(ii) Solve the difference equation

 $y_{n+2} - 4y_{n+1} + 3y_n = 5^n$ given that $y_0 = 0$, $y_1 = 0$