Reg. No:						

Question Paper Code :R3M24

B.E./B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Third Semester

Electrical And Electronics Engineering

R21UMA324-PROBABILITY, STATISTICS, COMPLEX ANALYSIS AND NUMERICAL METHODS

		(Regulations R2	2021)	
Dur	ation: Three hours			Maximum: 100 Marks
		PART A - $(10 \times 1) = 0$	10 Marks)	
1.	Large sample size is			CO6-U
	(a) 30	(b) >30	(c) < 30	(d) none of the above
2.	Choose the F-test statistic	is		CO6-U
	(a) $F = S_1^2 / S_2^2 if S_1^2 < S_2^2$	(b) $F = S_2^2 / S_1^2$ if $S_2^2 >$	S_1^2 (c) $F = 0$	(d) None of the above
3.	If A and B are mutually e	xclusive events then $P(A \cup$	B) =	CO6-U
	(a) 0	(b) $P(A) + P(B)$	(c) P (A) . P(B)	(d)) P(A) - P(B)
4.	If X and Y are independent	nt random variables then		CO6-U
	(a) $f(x,y) = f(x) \cdot f(y)$	(b)f(x,y) = f(x) + f(y)	(c) $f(x,y) = f(x) - f(y)$	(d) None of the above
5.	For any root the order of	convergence of Newton's r	nethod is	CO6- U
	(a) 4	(b) 1	(c) 2	d) 3
6.	Gauss Seidel method con	verges faster than		CO6-U
	(a) Gauss Elimination	(b) Gauss Jacobi	(c) Gauss Jordan (d) Newton's
7.	In Euler's method, if h is	small, the method is too		CO6-U
	(a) fast	(b) slow	(c) average	(d) None of these
8.	Predictor-Corrector method	ods are starting r	nethods	CO6-U
	(a) self	(b) not self	(c) identity	(d) None of these
9.	Simple pole is a pole of o	rder		CO6-U
	(a) 1	(b) 2	(c) 3	(d) 4

10. The value of
$$\int_{C} \frac{dz}{z^2} = 0$$
 where C is _____

CO5-App

(a)
$$|z| = 1$$

(a)
$$|z| = 1$$
 (b) $|z-1| = 2$ (c) $|z| = 2$

(c)
$$|z| = 2$$

(d)
$$|z-2|=1$$

$$PART - B$$
 (5 x 2= 10Marks)

11. If $S_1^2 = 13.33$ and $S_2^2 = 28.55$ then compute the value of F- ratio.

CO1-App

12. Using Probability mass function, Compute the mean value for the following CO2-App distribution.

X	-2	-1	0	1
P(X	0.4	0.1	0.2	0.3
)				

13.

CO6-U

State Newton's Iterative formula

14. Using Euler's method find y(0.1) given $\frac{dy}{dx} = 1 + y^2$, y(0) =0

CO4-App

15. Evaluate $\int_{c} \frac{z}{z-2} dz$ where C is |z| = 2

CO5-App

16. (a) (i) Two researchers A and B adopted different techniques while rating CO1-Ana (8) the student's level. Identify the Sampling distribution; Can you say that the techniques adopted by them are significant?

the teeningues adopted by them are significant.										
Researchers	Below	Average	Above	Genius	Total					
	Average		Average							
A	40	33	25	2	100					
В	86	60	44	10	200					
Total	126	93	69	12	300					

(ii) Two horses A and B were tested according to time (in seconds) to CO1-Ana (8) run on a particular track with the following results:

					\overline{c}		
Horse A	28	30	32	33	33	29	34
Horse B	29	30	30	24	27	29	

Identify the sampling distribution, test whether Horse A is running faster than B at 5% level.

Or

(i) On the basis of information noted below, find out whether the new CO1-Ana (8) treatment is comparatively superior to the conventional one. Identify

the sampling distribution.

	Favorable	Non-Favorable	Total
conventional	40	70	110
New	60	30	90
Total	100	100	200

(ii) The following are the average weekly losses of working hours due CO1-Ana to accidents in 10 industrial plants before and after an instruction of a safely program was in two operation.

Before	45	73	46	104	33	57	83	34	26	17
After	36	60	44	119	35	51	77	29	24	11

Use to 0.05 level of significance to test whether the safely is effective.

17. (a) A Random Variable X has the following probability distribution

 $CO2-App \qquad (16)$

X=x	0	1	2	3	4	5	6	7
P(X=x)	0	k	2k	2k	3k	k ²	$2k^2$	7k ² +

Findi) 'k'

ii) P(X < 6), $P(X \ge 6)$ & P(1.5 < X < 4.5 / X > 2)

iii) If $P(X \le k) > \frac{1}{2}$ find the minimum value of 'k'

iv) Distribution function of x - v) E(X)

 O_1

(b) (i) probability distribution function of a random variable X is

CO2-App (8)

$$f(x) = \begin{cases} x, 0 < x < 1 \\ 2 - x, 1 < x < 2 \\ 0, x > 2 \end{cases}$$

Find the cumulative distribution function of X.

(ii) Using the probability mass function of Binomial distribution, CO2-App (8) Compute the moment generating function and hence find mean and variance

18. (a) (i) Solve for a positive root of $x \log_{10} x - 1.2 = 0$ by Newton's CO3-App (8) Raphson method

(ii) Solve 27x + 6y - z = 85, 6x + 15y + 2z = 72, x + y + 54z = 110 by CO3-App (8) Gauss Jacobi method

Or

- (b) (i) Using Power method find numerically largest Eigen value of CO3-App (8) $\begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$
 - (ii) Solve 27x + 6y z = 85, 6x + 15y + 2z = 72, x + y + 54z = 110 by CO3-App (8) Gauss Seidel method
- 19. (a) (i)Using Taylor's series method find y(1.1) given y' = x + y with y(1) = 0 (8)
 - (ii) Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with y(0) = 1, find y for x = 0.1 by Euler's CO4-App (8) Method

Or

(b) (i) Given $\frac{dy}{dx} = 1 + y^2$, y(0) = 0, y(0.2) = 0.2027, y(0.4) = 0.4228, CO4-App (8)

y(0.6) = 0.6841 evaluate y(0.8) By Adams – Bash forth Method

- (ii) Using R-K method of fourth order, solve $\frac{dy}{dx} = x^3 + y$ with y(0) = 2 at x = 0.2, x = 0.4 (8)
- 20. (a) (i) Evaluate using Cauchy's Residue theorem for CO5-App (8) $\cos \pi z^{2} + \sin \pi z^{2}$

 $f(z) = \int \frac{\cos \pi z^2 + \sin \pi z^2}{(z+1)(z+2)} dz$, where 'C' is |z| = 3

(ii) Evaluate $f(z) = \frac{z}{(z+1)(z+3)}$ in Laurent's series valid for the region CO5-App (8) 1 < |z| < 3.

Or

(b) Using Contour integration, to prove $\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} dx = \frac{\pi}{a + b} a > b > 0 \quad \text{CO5-App}$ (16)