A
Δ
\Box

Reg. No.:						

Question Paper Code: U6301

$B.E.\,/\,B.Tech.\,DEGREE\,EXAMINATION,\,APRIL\,/\,MAY\,2025$

Sixth Semester

Electrical and Electronics Engineering

			\mathcal{C}					
	21U	JEE601 – ELECTRIC D	ORIVES AND CONT	ΓROL				
		(Regulation	ons 2021)					
Dura	ation: Three hours	Maximum: 10	00 Marks					
		Answer ALI	Questions					
		PART A - (10 x	1 = 10 Marks					
1.	During Deceleration Torque)	of a DC motor (T= Mo	otor torque, TL =Loa	d	CO1- U			
	(a) T=TL	(b) $T < TL$	(a) T=TL	(b) $T < TL$				
2.	High braking torque	produced in			CO1- U			
	(a)Regenerative bral	king (b) Dynamic brak	ting (c) Plugging	(d) None of	these			
3.	3. A DC motor operates at a voltage of 220 V and 4 A. If the voltage is reduced to 110 V, what will be the speed of the motor as a percentage of the original speed, assuming linear relationship?							
	(a) 50%	(b) 60%	(c) 70%	(d) 10%				
4.	I. Single phase fully controlled rectifier fed separately excited dc motor operates in							
	(a) Quadrant I &II	(b) Quadrant II & III	(c) Quadrant I & I	V (d) Quadrant	t III & IV			
5.		what is the required vo			CO2- App			
	(a) 476 V	(b) 416 V	(b) 476 V	(b) 416	5 V			
6.	A cyclo-converter application?	fed induction motor is	s most suitable for	which	CO1-U			
	(a) Cement mill driv	ve .	(b) paper mill driv	e				
	(c) compressor drive	2	(d) machine tool d	rive				

7.	The maximum value of torque that a synchronous motor, can develop without losing its synchronism, is known as							CO1- U		
	(a) b	oreaking torque	(b) synchronizing to	orque (c) p	oull out torque	(d) sl	ip torqı	ie		
8.	term		or operates with an 600V, and synchronor		_		CO	2 -App		
	(a) (0.5 lagging	(b) 0.5 leading	(c) 0.8 la	agging (c	d) 0.8 le	ading			
9.	Power modulators are used for					(CO1- U			
	(a) s	speed sensing		(b) curre	nt sensing					
	(c) s	selecting the mod	le of operation	(d) all th	(d) all the above					
10.	Electrical time constant Ta is							CO1- U		
	(a) I	Ra *La	(b) La / Ra	(c) Ra/ L	a (d	l) Ra ² La	a			
			PART – B (5	x 2= 10 Ma	rks)					
11.	Ana	lyze the factors i	influencing the selecti	on of electri	c drives.		CO1	CO1 -U		
12.	Des	cribe the purpose	e of a freewheeling die	ode in a pha	se-controlled re	ctifier.	CO1	-U		
13.	A three-phase induction motor operates at 400V, 50Hz with a V/f control strategy. If the frequency is reduced to 25Hz, what should be the new stator voltage to maintain constant flux?									
14.	Identify two advantages of employing self-control in synchronous motors. CO1 -U									
15.	Express the transfer function of a separately excited DC motor.						CO1 -U			
			PART - C	(5 x 16= 80	Marks)					
16.	(a)	Illustrate the quantity for a motor drive	uadrantal diagram of ving hoist load. Or	speed-torqu	ue characteristi	cs CO	1- U	(16)		
	(b)	system.	e fundamental torque detail about steady s drive.	•			1- U	(8+8)		
17.	(a)	excited dc mor	ngle phase fully contro tor drive. From the e, speed and torque various firing angl	circuit oper e equations	ration derive the	ne ne	2-App	(16)		
			O1							

- (b) A 200V, 875 pm, 150 A Separately excited dc motor has an CO2-App (16) armature resistance 0.062 Ω. It is fed from a 1-Φ fully controlled rectifier with an ac source Voltage of 220V, 50Hz. Assuming Continuous conduction, Calculate
 - (i) Firing angle for rated motor torque & 750 rpm
 - (ii) Fiving angle for rated. motor torque & (-500) rpm
 - (iii) Motor speed for α =1600 at rated torque.
- 18. (a) Apply the stator voltage control method to regulate the speed of CO2-App (16) an induction motor drive at constant frequency and variable voltage and draw its performance characteristics waveform.

 Discuss its advantages and disadvantages in terms of efficiency, torque control, and suitability for different applications.

Or

- (b) Implement the low rated, varied voltage speed method to regulate CO2-App (16) the speed of an induction motor drive at a constant frequency and variable voltage. Derive the performance characteristics and illustrate the corresponding waveforms. Evaluate the method by discussing its advantages and disadvantages in terms of efficiency, torque control, and its suitability for various applications.
- 19. (a) Correlate the regulation of output current in a CSI-fed CO4-Ana (16) synchronous motor with its performance characteristics, especially in comparison to a VSI-fed motor. Analyze how commutation and harmonic distortions influence torque-speed characteristics, dynamic response, stability, power factor, and efficiency under varying load conditions.

Or

(b) Illustrate how voltage regulation in a VSI-fed synchronous motor CO4- Ana affects its dynamic response and overall performance under fluctuating load conditions. Analyze the influence of switching frequency and PWM techniques on harmonic distortion and efficiency, and examine the impact of DC bus voltage variations on torque ripple, stability, and power factor.

20. (a) Analyze the design procedure of a proportional-integral (PI) CO4-Ana (16) controller for estimating the steady-state error in the current control loop of a DC drive system. Evaluate how proportional and integral gains influence transient response, stability, and steady-state error, and compare the effectiveness of a PI controller with a simple proportional controller in improving the dynamic performance of the DC drive.

Or

(b) Compare the performance of a DC motor speed control system CO4-Ana using a P controller and a PI controller by analyzing key characteristics such as rise time, settling time, stability, and the effect of the integral term on system behavior.