D N						
Reg. No.:						

Question Paper Code: R2M05

B.E./B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Second Semester

Electrical and Electronics Engineering

R21UMA205 - CALCULUS AND TRANSFORMS TECHNIQUES

(Regulations R2021)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 2 = 20 \text{ Marks})$

1. Solve the Euler Cauchy's equation $(x^2D^2 + xD)y = 0$ CO1-App

2. Transform $(x^2D^2 - 3xD - 5)y = x^2 \sin(\log x)$ into linear equation with constant CO1-App coefficient

3. Show that $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$ is a conservative vector field. CO2- App

4. If $\phi = x^2 + y^2 - z - 10$, then find $|\nabla \phi|$ at (1, -1, 1).

5. Compute CO3-U

 $L \mid t^{\frac{3}{2}}$

6. State and Prove the Initial value theorem. CO3 -U

7. State Dirichlet's conditions CO4 -U

8. Compute the root mean square value of the function f(x) = x in (0,1) CO4-App

9. Define Fourier cosine transform pair CO5-App

10. State convolution theorem for Fourier transform.

PART – B (5 x 16= 80 Marks)

11. (a) (i) Solve the method of variation of parameters $(D^2 + 4)y = Sec \ 2x$ CO1- App (8)

(ii) Solve the differential equation $(D^2 - D - 6)y = 3e^{4x} + 5$ CO1-App (8)

- (b) (i) If the population of a country double in 50 years, in how many CO1- App years will it triple under the assumption that the rate of increase is proportional to the number of inhabitants?
 - (ii) Solve the differential equation $(x^2D^2 + 4xD + 2)y = x \log x$ CO1- App (8)
- 12. (a) Verify Divergence theorem for $\vec{F} = 5x^2 \vec{i} + 4y^2 \vec{j} + 7z^2 \vec{k}$ over the CO2-App (16) cube $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$.

Or

- (b) Verify Green's theorem in XY plane for, $\int_C (x^2 + y^2) dx 2xy dy$ CO2-App (16) where C is boundary of the region x = 0, y = 0, x = a, y = a.
- 13. (a) (i) Find the Laplace transform of $f(t) = \begin{cases} k, & 0 < t < a \\ -k, & a < t < 2a \end{cases}$ (8)
 - (ii) Compute $L\left[\frac{e^{-at}-e^{-bt}}{t}\right]$ CO3- App (8)

Or

- (b) (i) Solve by using L.T. $y'' 3y'' + 2y = e^{-t}$ given that if y(0) = 1, y'(0) = 0 (8)
 - (ii) Solve by the convolution theorem $CO3- App \qquad (8)$ $L^{-1} \left[\frac{s^2}{(s^2 + a^2)(s^2 + b^2)} \right]$
- 14. (a) (i) Compute first two harmonics of the Fourier series for the CO4-App (8) following data.

			$2\pi/3$				
y	1.8	0.3	0.5	2.16	1.3	1.76	1.8

(ii) Find the Half range sine series for f(x) = x in $(0, \pi)$ CO4- App (8)

Or

(b) Express $f(x) = (\pi - x)$ as a Fourier series of period 2π in the CO4-App (16) interval $0 < x < 2\pi$.

15. (a) Compute the Fourier Transform of

CO5-App

(16)

 $f(x) = \begin{cases} a - |x| & \text{if } |x| \le a \\ 0 & \text{if } |x| > a \end{cases} \text{ and hence evaluate } (i) \int_{0}^{\infty} \left(\frac{\sin x}{x}\right)^{4} dx$

$$(ii) \int_{0}^{\infty} \left(\frac{\sin x}{x} \right)^{2} dx$$

Or

Evaluate (i) $\int_{0}^{\infty} \frac{dx}{(x^2+1)(x^2+4)}$ (ii) $\int_{0}^{\infty} \frac{dx}{(x^2+36)^2}$ using Fourier (16)transform