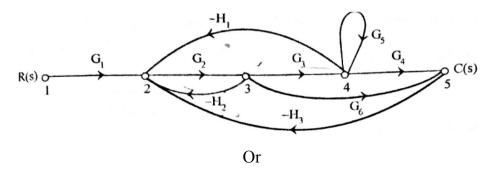
C	Reg. No. :						
C	1105.110						

Question Paper Code: R4302

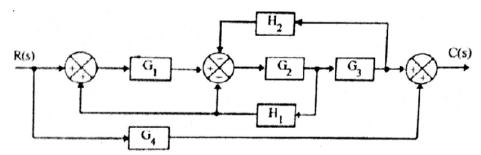
B.E. / B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Fourth Semester

		Electrical a	and Electronics Engineering					
		R21UEE40	02 CONTROL SYSTEMS					
		(R	Regulations R2021)					
Dur	ation: Three hour	S		Maximum: 1	00 Marks			
		Ans	wer ALL Questions					
		PART	$A - (5 \times 1 = 5 \text{ Marks})$					
1.	If a signal is pas noise signal.	signal is passed through an integrator, itthe amplitude of CO1-U se signal.						
	(a) Enhances	(b) Reduces	(c) Stabilizes	(d) Factori	zes			
2.	$(S+2)(S+1)/S^2(S+1)$	S+3)(S+4) is a			CO3-App			
	(a) Type- 0	(b) Type -1	(c) Type -2	(d) Type –	3			
3.	An increase in g	gain, in most system	s, leads to		CO1-U			
	(a) smaller damping ratio		(b) larger dan	nping ratio				
	(c) constant dam	nping ratio	(d) none of th	e above				
4.	In a stable contr	In a stable control system saturation can cause which of the following? CO1-U						
	(a) Low-level oscillations		(b) High-leve	loscillations				
	(c) Conditional stability		(d) Over dam	(d) Over damping				
5.	Which one of the following is test for controllability and Observability? CO1-U							
	(a) Kalman's test(c) None of the above		(b) Gilbert's t					
			(d) Both (a)	& (b)				
		PART	$-B (5 \times 3 = 15 \text{ Marks})$					
6.	Why negative fe	ms?	CO1-U					
7.	Determine the ty	$S^{2}(S+4)$.	CO2-App					
8.	Evaluate the Phase angle of the given transfer function $G(S) = 10 / S (1+0.4S)$ CO3-A							


(1+0.1S).

- 9. Explain the need and sufficient condition for stability in Routh Hurwitz CO1-U criterion
- 10. Define state equation.


CO1-U

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

11. (a) Build the overall gain C(s)/R(s) for the signal flow graph shown in CO2-App (16) figure.

(b) Develop the closed loop transfer function C(s)/R(s) of the system CO2-App (16) whose block diagram is shown in figure.

12. (a) The Unity feedback system is characterized by a open loop transfer CO3-App (16) function G(s)=K/S(S+10). Determine the gain K. So that this system will have a damping ratio of 0.5 for this value of K, settling time, peak overshoot, peak time of the system for unit step input

Or

(b) The open loop transfer function of unity feedback system is given CO3-App (16) by G(s) =K/S(ST+1),where K and T are positive constants. By what factor the amplifier gain K be reduced, so that the peak overshoot of unit step response of the system is reduced from 75% to 25%

13. (a) Analyze the Bode plot for the given transfer function by CO4-Ana (16) determining the magnitude and phase response, and identifying the gain and phase crossover frequencies, while discussing their implications for system stability and performance.

$$G(s) = \frac{10}{s(1+0.4s)(1+0.1s)}$$

O

(b) Construct the polar plot for the following transfer function and find CO4-Ana (16) Gain cross over frequency, Phase cross over frequency, Gain margin and Phase margin. Analyze its stability

$$G(s) = \frac{1}{s(1+s)(1+2s)}$$

14. (a) Construct Routh array and Examine the stability of the system CO5-Eva (16) represented By the characteristic equation,

$$S^7 + 5S^6 + 9S^5 + 9S^4 + 4S^3 + 20S^2 + 36S + 36 = 0$$

Comments on the location of roots.

Or

- (b) (i) Using Routh criterion, determine the stability of the system CO5-Eva represented by the characteristic equation S⁴+8S³+18S²+16S+5=0.Comment on the location of the roots of characteristic equation. (8)
 - (ii) By Routh stability criterion, determine the stability of the system represented by the characteristic equation ,9S⁵-20S⁴+10S³-S²-9S+10=0.Comment on the location of roots of characteristic equation.
- 15. (a) Develop the state transition matrix for the state model whose CO3-App (16) system matrix A is given by

$$A = \begin{bmatrix} 0 & -1 \\ 2 & -3 \end{bmatrix}$$

Or

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 0 & -3 & 1 \\ -3 & -4 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$Y = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Develop the Transfer function.