Reg. No. :												
------------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: U3407

B.E. / B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Professional Elective

Electrical and Electronics Engineering

21EEV407- INTELLIGENT CONTROL OF ELECTRIC VEHICLES

(Regulations 2021)

Duration: Three hours Maximum: 100 Marks

Answer All Questions

 $PART - A (5 \times 20 = 100 \text{ Marks})$

1. (a) Explain the working principle of a BLDC motor. Derive the CO1-U (20) mathematical model, including differential equations, transfer functions, and state-space equations, for a BLDC motor. Discuss the impact of motor parameters on the performance.

 Ω r

- (b) Explain the concept of commutation in BLDC motors and the CO1-U (20) transients that occur during this process. Discuss how these transients can be minimized or controlled using modern control techniques such as sensor less control and feedback loops
- 2. (a) Given the following PID control parameters, analyze how each CO3-Ana (20) parameter affects the performance of a BLDC motor: Kp = 10, Ki = 0.5, Kd = 2. What improvements could be made for better performance?

Or

(b) Break down the working principles of Vector Control for BLDC CO3-Ana (20) motors and analyze its advantages over scalar control. Illustrate the role of Field-Oriented Control (FOC) in improving the motor's efficiency and dynamic performance with relevant diagrams and equations

3. (a) Demonstrate defuzzification using the Centroid and Mean of CO2-App (20) Maxima methods, calculate the defuzzified outputs, and analyze which method better represents fuzzy data in control applications. Illustrate their advantages and disadvantages with examples.

Or

- (b) In a fuzzy decision-making system, how would you aggregate CO2-App (20) fuzzy rules to determine the final output for controlling the temperature in a room?
- 4. (a) Write a simple example of an interrupt routine in an RTOS that CO3-Ana (20) toggles an LED every 1 second. Explain in details.

Or

- (b) Describe how semaphores can be used to prevent race conditions in CO3-Ana (20) an embedded system with shared resources.
- 5. (a) Implement a small embedded application that collects CO2-App (20) environmental data (e.g., temperature, humidity) and sends it to a server for processing.

Or

(b) Create a simple flowchart that outlines the steps an autonomous car CO2-App (20) would take to detect and avoid an obstacle using embedded systems.