Question Paper Code: U3503

B.E. / B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Professional Elective

Electrical and Electronics Engineering

	21EEV503-SENSING TECHNIQU	ES AND SENSOR S	YSTEMS	
	(Regulation	ns 2021)		
Duration: Three hours			Maximum: 100 Marks	
Answer ALL Questions				
PART A - $(5 \times 1 = 5 \text{ Marks})$				
1.	The error which is caused by unpredictable variations in the sensor's output.			CO1-U
	(a) Random Error (b) Systematic Error	(c) Gross Error	(d) Static Error	
2.	The most commonly used sensor to measure s	strain is		CO1-U
(a) Piezoelectric Sensor (b) Strain Gauge (c) Load C		(c) Load Cell	(d) Vacuum Sensor	
3.	Residual voltage is produced in			CO1-U
	(a) Potentiometric Sensor (b) Capacitive S	Sensor (c) LVDT	(d) FMagnetic	Sensor
4.	The fact that distinguishes optical gyroscopes from mechanical gyroscopes is CO1-			
	·			
	(a) Faster response time	(b)) Higher sensitivity	ty	
	(c) No moving parts	(d) Lower cost		
5.	Type of signal conditioning circuit that is sensors is	s often used for the	rmoresistive	CO1-U
	(a) Wheatstone Bridge	(b) Schmitt Trigger		
	(c) Low-Pass Filter	(d) Op-Amp Circuit		
$PART - B (5 \times 3 = 15 \text{ Marks})$				
6.	Discuss the key electronic properties of s suitable for sensors.	emiconductors that	make them CC	01-U

7. Apply the concept of a torque sensor in an automobile engine system and CO2-App

show its significance in vehicle performance.

- 8. Modify the design of a basic signal conditioning circuit for an ultrasonic CO2-App sensor used in level measurement and illustrate its key functional blocks.
- 9. Experiment with piezoresistive and piezoelectric accelerometers to determine CO2-App their advantages in dynamic applications and categorize their best-use scenarios.
- 10. Explain how an ultrasonic flow sensor determines the liquid flow rate in a CO1-U pipe system and analyze the key factors affecting its performance.

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

11. (a) Explain the classification of sensors based on their working CO1-U principles and applications. Provide suitable examples and include a table or graphical representation to support your explanation.

Or

- (b) Describe the role of CCDs (Charge-Coupled Devices) in imaging CO1-U systems. Include a system-level block diagram and explain their applications in scientific and consumer technologies.
- 12. (a) Develop a signal conditioning circuit that can be used with a CO2-App (16) strain gauge-based force measurement set up. Describe how it amplifies the strain measurement output.

Or

- (b) Apply your understanding of capacitive pressure sensors to CO2-App (16) explain their operation and illustrate how they are used for pressure measurement with a suitable example application and a block diagram.
- 13. (a) Analyze the working principles of potentiometric and capacitive CO3-Ana (16) sensors, outline their key characteristics, and classify real-world applications for both types.

Or

(b) Break down the working principles of inductive and magnetic CO3-Ana (16) sensors, categorize their applications in position and displacement measurement, and illustrate their functionality with necessary diagrams.

14. (a) Examine the characteristics and working of a capacitive CO4-Ana (16) accelerometer, diagram its structure using a block diagram, and analyze its uses.

Or

- (b) Analyze the working of a monolithic gyroscope and explain its CO4-Ana applications in an engineering system with a block diagram.
- 15. (a) Apply the principles of a thermocouple temperature sensor to CO5-App (16) real-world scenarios, illustrate its structure with a labeled circuit diagram, and show its practical applications.

Or

(b) Apply the operating principle of electromagnetic flow sensors to CO5-App industrial setups, illustrate their working with a labeled block diagram, and experiment with their use in different conditions.