A
\mathbf{A}
_

_		
Reg.	No.	:

a) Chemical reaction between fuel and nitrogen

c) Combination of fuel with oxygen to release

b) Reaction that absorbs energy

d) Mechanical breakdown of fuel

Question Paper Code: U3105

B.E. / B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Professional Elective

Electrical and Electronics Engineering

21EEV105 - ENERGY MANAGEMENT AND AUDITING

(Regulations 2021)

Duration: Three hours				Maximum: 100 Marks			
		Answer	ALL Questions				
		PART A - ((10 x 1 = 10 Marks)				
1.	Classify the follow	ring as a commercial	energy source		CO1- U		
	a) Firewood	b) Coal	c) Animal dung	d) Agricultu	ral waste		
2.	2. Explain what final energy consumption measures				CO1- U		
a) Energy lost in transmission b) Total energy used by end			ed by end consun	ners			
	c) Total energy pro	oduced by a nation	d) Energy reserved	for emergencies			
3.	Classify which of flow diagrams	the following is NO	T a method for preparing process				
	a) Use of flowchar	ts b) Mapping	c) Random dat	ta d) Interco	onnections		
4.	Explain the primar	y purpose of materia	l and energy balance di	agrams	CO1- U		
	a) To create aesthetic designs b) To qu			nputs and outputs			
	c) To eliminate wa	ste completely	d) To ensure equ	uipment maintena	ince		
5.	Classify which of t	the following is NOT	a type of fuel		CO1-U		
	a) Solid	b) Liquid	c) Gaseous	d) Plasma			
6.	Interpret the princi	ple of combustion.			CO1-U		

7.	Classify which of the following is NOT a	CO1- U					
	a) Reciprocating compressor	b) Rotary compressor					
	c) Turbo compressor	d) Hydraulic compressor					
8.	Explain the main factor affecting the efficiency	ciency of an air compressor	CO1- U				
	a) Air humidity b) Air pressure setti	ing c) Motor size	d) Compressor				
9.	Explain the primary benefit of power factor improvement.						
	a) Reduced system efficiency	b) Increased line losses					
	c) Lower energy costs	d) Increased demand charge	S				
10.	Demonstrate the main function of an (APFC)	automatic power factor cont	croller CO1- U				
	a) Reduces system voltage	b) Maintains a constant por	wer factor				
	c) Increases the power factor manually	d) Regulates the transforme	er losses				
	PART – B (:	5 x 2= 10 Marks)					
11.	Classify Commercial and Non-commercial energy sources CO1-						
12.	Classify the methods for preparing process flow diagrams						
13.	Compare the key properties of fuel oil, coal, and gas.						
14.	Explain how air compressor operation can be made more efficient C						
15.	5. Explain electrical load management and how maximum demand is controlled						
	PART – C	C (5 x 16= 80Marks)					
16.	(a) Analyze how different energy pricing carbon pricing, and time-of-use consumption patterns. Propose developing country that aims to enterpromoting conservation. Justify ye economic and environmental implication.	tariffs can influence energy a pricing framework for a sure energy affordability while our proposal by discussing its					
	(b) A manufacturing industry is identificant under the Energy Conservation Act its 2010 amendments can be applied consumption. Propose an actionable and mandatory measures, while implementation.	2001. Discuss how the Act and d to reduce the facility's energy e plan, including energy audits	` ′				

17. (a) Explain the financial analysis techniques used for evaluating energy CO1- U projects, including simple payback period, return on investment (ROI), net present value (NPV), and internal rate of return (IRR). Apply these techniques to assess the feasibility of an industrial energy-saving project, providing calculations and interpretations of results.

Or

- (b) Discuss the roles and responsibilities of an energy manager in CO1-U (16) ensuring efficient energy use within an organization. Highlight the importance of location-specific energy management strategies and how they align with organizational goals. Suggest a framework for employee training and planning to support energy management initiatives.
- 18. (a) Classify the different types of industrial furnaces and discuss CO3-Ana (16) general fuel economy measures applicable to them. Analyze the role of excess air, temperature control, draft control, and waste heat recovery in improving furnace efficiency. Provide recommendations for reducing heat losses and maximizing energy savings in furnace operations.

Or

- (b) Analyze the properties of steam and their critical role in industrial CO3- Ana (16) processes. Examine how steam distribution losses, steam leakage, and improper steam trapping contribute to inefficiencies. Differentiate between various energy-saving measures, including flash steam recovery, and assess their effectiveness in improving the overall efficiency of steam systems.
- 19. (a) Implement the key considerations for selecting a diesel generating CO2- App (16) system for industrial use and demonstrate methods for assessing its energy performance. Utilize key efficiency factors to identify areas for energy conservation and develop practical strategies to enhance energy performance while minimizing operational costs.

Or

(b) Apply the working principle of the vapor compression refrigeration CO2- App (16) cycle to emphasize the role of refrigerants and the coefficient of performance (COP). Utilize key factors affecting the efficiency of refrigeration and air conditioning systems to identify energy-saving opportunities. Develop strategies to enhance performance and reduce energy consumption in refrigeration systems.

20. (a) Implement the key considerations for selecting a diesel generating CO2- App (16) system for industrial use and demonstrate methods for assessing its energy performance. Utilize key efficiency factors to identify areas for energy conservation and develop practical strategies to enhance energy performance while minimizing operational costs..

Or

(b) Implement the appropriate selection of pumps for industrial CO2-App (16) applications to enhance system operations. Employ effective flow control techniques to improve pump efficiency and reduce energy waste. Develop optimization strategies focusing on system configuration, maintenance protocols, and advanced control measures to achieve energy savings and reliable performance.