Reg. No:							
						i l	ı

Question Paper Code :R3M23

B.E./B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025

Third Semester

	E	lectronics And Commun	ication Engineering	5	
	R21UMA323-	NUMERICAL ANALY	SIS AND LINEAR	R ALGEBRA	
		(Regulations	R2021)		
Dura	ation: Three hours			Maximum: 10	00 Marks
		PART A - (10 x 1	= 10 Marks)		
1.	Trapezoidal rule is so sum oftrapez	o called, because it appro zoids	oximates the integr	al by the	CO6-U
	(a) n	(b) n+1	(c) n-1	(d) 2r	1
2.	In Simpson's 3/8 rule	the number of subinterv	als should be		CO6-U
	(a) multiple of 1	(b) multiple of 2	(c) multiple of	3 (d) A	ll of these
3.	Taylor Series method RK, Milne's and Adam	will be very useful to a	give some v	alues for	CO6-U
	(a) initial	(b) final	(c) intermediate	e (d) tw	7O
4.	The Runge-Kutta met	hod of second order is no	othing but the		CO6-U
	(a) Euler's method		(b) modified E	uler's method	
	(c) improved Euler's	Method	(d) Taylor's sea	ries method	
5.	PDE of second order,	$ifB^2 - 4AC < 0$ then			CO6-U
	(a) parabolic	(b) elliptic	(c) hyperbolic	(d) Non homo	geneous
6.	The Poisson's equation	$\int d^2 u / \partial x^2 + \partial^2 u / \partial y^2 = f(x, y)$	is a example of		CO6-U
	(a) $\frac{1}{2}$	$(b)\frac{1}{3}$	(c) $\frac{1}{4}$	(d) 1	

7. In a vector space V, for every x, y ∈ V then the property x+y=y+x is known as ______
(a) commutative (b) associative (c) identity (d) inverse
8. In a linear transformation T: V→W the range of T is a subspace of _____

9. $\langle x, x \rangle = 0$ if and only if _____

(a) x = 1 (b) $x \neq 1$ (c) x = 0 (d) $x \neq 0$

10. Let V be an inner product space and $u \in V$ is orthogonal to $v \in V$ then CO6-U

(a) $\langle u, v \rangle = 1$ (b) $\langle u, v \rangle \neq 0$ (c) $\langle u, v \rangle = 0$

(b) W

(a) V

PART - B (5 x 2= 10Marks)

(c) both V and W

(d) none of these

(d) None

11. Apply three –point Gaussian quadrature formula to evaluate $\int_{-1}^{1} \cos x \ dx$ CO1- App

12. Using Taylor's series method find y(0.1) given y' = 1 + y with y(0)=1 CO2- App

13. Classify $U_{xx} - 2U_{xy} + U_{yy} = 0$ CO6-U

14. Determine whether the vectors $v_1 = (1, -2,3)$, $v_2 = (5,6,-1)$ and $v_3 = (3,2,1)$ form a linearly dependent or linearly independent set in R³

15. Verify triangle inequality for the following data ||x + y|| = 6, ||x|| = 3 and ||y|| = 4 CO5-App

$$PART - C (5 \times 16 = 80 Marks)$$

16. (a) (i) Find the first and second derivatives of y at x = 54 from the CO1-App (8) following data

X	50	51	52	53	54	55	□6
y	3.6840	3.7084	3.7325	3.7563	3.7798	3.8030	3.8259

(ii) The velocity v of a particle at a distance S from a point on its CO1-App (8) path is given by the table below.

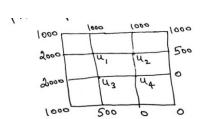
X	0	10	20	30	40	50	60
у	47	58	64	65	61	52	38

Estimate the time taken to travel 60 metres by using Simpson's one-third rule and Trapezoidal rule.

Or

- (b) (i) Evaluate $\int_{0}^{2} \frac{dx}{4 + x^{2}}$ using Romberg's method correct to 4 decimal Places. (8)
 - (ii) Evaluate. $\int_{1}^{5} \frac{dx}{x}$ using three point Gaussian quadrature formula. CO1-App (8)
- 17. (a) (i) Using Taylor's series method find y(0.1) given $y' = x^2 + y^2$ with CO2-App (8) y(0)=1
 - (ii) Using R-K method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$ CO2-App (8) with y(0)=1at x=0.2

Or


- (b) (i) Given $\frac{dy}{dx} = 1 + y^2$, y(0) = 0, y(0.2) = 0.2027, y(0.4) = 0.4228, CO2-App (8)
 - y(0.6) = 0.6841 evaluate y(0.8) by Adams Bash forth Method. (ii) Given $\frac{dy}{dx} = x^3 + y$, y(0)=2, y(0.2)=2.443, y(0.4)=2.99, y(0.6)=3.68, CO2-App (8)

Find y(0.8) by Milne's Predictor & Corrector method

- 18. (a) (i) Solve $\frac{\partial^2 u}{\partial x^2} = 2 \frac{\partial u}{\partial t}$, u(0,t) = 0, u(4,t) = 0, u(x,0) = x(4-x). Take CO3-App (8) h = 1 and find the values of u up to t = 5 using Bender-Schmidt's difference equation.
 - (ii) Solve $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$ in $0 \le x \le 5$, $t \ge 0$, u(0,t) = 0, u(5,t) = 100, CO3-App (8) u(x,0) = 20 find the values of u for 1 time step function with h = 1 by Crank-Nicholson's difference method.

Or

(b) Obtain a finite difference Scheme to Solve the Laplace equation CO3-App (16) $U_{xx}+U_{yy}=0$ at the pivotal points in the square mesh given below

- 19. (a) (i) Verify the vectors (2,1,0), (-3,-3,1), (-2,1,-1) in \mathbb{R}^3 is a basis of CO4-App (8) \mathbb{R}^3
 - (ii) Find the dimension of the subspace spanned by the vectors CO4-App (8) (1,0,2), (2,0,1), (1,0,1) in $V_3(R)$

Or

(b) (i) If T: $\mathbb{R}^2 \to \mathbb{R}^2$ be linear transformation defined by $T(a_1, a_2) = (a_1 + a_2, a_1)$ then find nullity(T), rank(T), Is T one-to-one? (8)

Is T onto? Also check the rank nullity theorem.

(ii) Find the matrix of the linear transformation T: $R^2 \rightarrow R^2$ defined CO4-App (8) by

T(a,b) = (2a-3b,a+b) for the standard basis of R^2

- 20. (a) (i) Show that the following function defines an inner product on CO5-App (8) $V_2(R)$ where $x = (x_1, x_2)$ and $y = (y_1, y_2)$ and $\langle x, y \rangle = 6 x_1 y_1 + 7 x_2 y_2$
 - (ii) If x = (2,1+i,i) and y = (2-i,2,1+2i) then verify Schwarz's CO5-App (8) inequality.

Or

(b) Apply Gram-Schmidt process to construct an orthonormal basis for CO5-App (16) $V_3(R)$ with the standard inner product for the basis $\{v_1, v_2, v_3\}$ where $v_1 = (1,0,1)$, $v_2 = (1,0,-1)$ and $v_3 = (0,3,4)$