		Question Pap	er Code: U6403				
B.E. / B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025							
		Sixth Se	emester				
	Electronics and Communication Engineering						
21UEC603 - IMAGE PROCESSING AND ANALYSIS							
		(Regulati	ons 2021)				
Dui	Duration: Three hours Maximum: 100 Marks						
Answer ALL Questions							
PART A - $(5 \times 1 = 5 \text{ Marks})$							
1.							
	a) scaling transformation b) vector transformation		n				
	c) simple transforma	ntion c	l) reflection transforma	ntion			
2.	In general, the log tr	ransformation can be rep	resented by	_ CO1-U			
	a) $s = c.log (1 - r)$	b) $s = c - \log (1 - r)$	c) s = c.log (1 + r)	$d) s = c + \log (1 + r)$			
3.	Canny edge detectio	on algorithm is based on,		CO1-U			
	a) Ideal model	b) step edge	c) real model	d) smoothing model			
4.	is a pooling operation that selects the maximum element from the region of the feature map covered by the filter.						
	a) Max Pooling	b) Average Poolin	g c) Global pooling	g d) None of these			
5.	metho	ds are used to group data	a samples into differen	t classes CO1-U			
	a) Clustering	b) Segmentation	c) Classification	d) Pattern recognition			
$PART - B (5 \times 3 = 15 \text{ Marks})$							
6.	Your headlights have on a sign 2m away.	•	60 W _{sr} -1. Determine th	ne irradiance CO2-App			

Reg. No.:

Given a simple image of size 10×10 whose histogram models the symbol CO2-App probabilities and is given by

P1	P2	Р3	P4
a	b	С	d

When the first order estimate of image entropy is maximum?

- Compute the distance between two pixels X (3,2), Y(1,1) using three distance CO2-App methods.
- Compare crisp and fuzzy classifier

CO1-U

10. Draw the structure of supervised clustering for image segmentation.

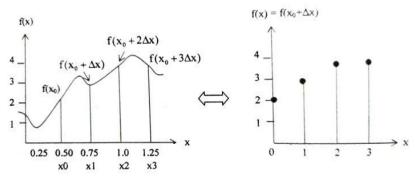
CO1-U

11. (a) Derive the expression for the image formation process in various CO1-U (16)projections

Or

(b) Describe briefly about Inverse Radon transform methods

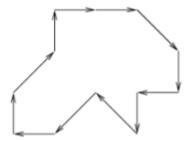
CO1-U


(16)

(16)

- (i) back-projection method
- (ii) Fourier transform method
- Define Histogram equalization of an image. A 3-bit image of size CO2-App 12. (a) (16)4×5 is shown below. Compute the histogram equalized image.

_			_	_
0	1	1	3	4
7	2	5	5	7
6	3	2	1	1
1	4	4	2	1
\bigcap_{r}				


(b) Consider the function shown in fig (a) sampling at the argument CO2-App values x0 = 0.75, x1 = 1, x2 = 1.25 and x3 = 1.5 and redefining the argument produces the discrete function in fig Calculate the Fourier spectrum

13. (a) Apply Roberts, Sobel and prewitt operators on the pixel(1,1) in the CO3-App (16) following image and analyze those operators

50	50	100	100	
50	50	100	100	
50	50	100	100	
50	50	100	100	

(b) How image is segmented using chain codes and explain it types. CO3-App (16) Find the 8-directional chain code and shape number for the figure given below:

14. (a) Consider a single artificial neuron with weights w1 = 2, w2 = -4 CO3-App (16) and w3 = 1. Let the activation of the unit is given by:

$$\varphi(v) = \begin{cases} 1 & \text{if } v \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Calculate what will be the output value y of the unit for each of the following input patterns:

Pattern	P_1	P_2	P_3	P_4
x_1	1	0	1	1
x_2	0	1	0	1
x_3	0	1	1	1
		Or		

- (b) Identify which method is suitable for classifying and recognizing CO3-App (16) objects in the images and implement with suitable examples.
- 15. (a) Analyze K-Means clustering for image segmentation with a CO5-Ana (16) suitable example and compare its performance with Mean shift algorithm

Or

(b) Write Matlab programs for various 2D geometric transformations CO5-Ana (16) for changing the orientation of an image and shifting every pixel in the image to a new position. Compare their results.