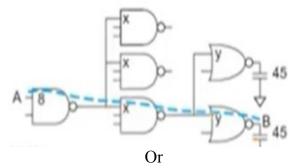
Question Paper Code: U6402


B.E. / B.Tech. DEGREE EXAMINATION, APRIL / MAY 2025		
Sixth Semester		
Electronics and Communication Engineering		
21UEC602- VLSI DESIGN		
(Regulations 2021)		
Dura	ation: Three hours Maximum:	100 Marks
	Answer ALL Questions	
PART A - $(5 \times 1 = 5 \text{ Marks})$		
1.	is a language used to describe a digital system	CO1-U
	(a) Verilog (b) c program (c) C++ Program (d) Java	Program
2.	The distance between the source and drain is called	CO1-U
	(a) Channel (b) Gate (c) Drain (d) Sour	rce
3.	The resistance and capacitance product of the MOS transistor is called	CO1-U
	(a) intrinsic delay (b) Extrinsic delay (c) both (a) & (b) (d) none of the	above
4.	Physical and electrical specification is given in	CO1-U
	(a) architectural design (b) logic design (c) system design (d) function	nal design
5.	High and low noise margins can be equalized by	CO1-U
	(a) $\beta n = \beta p$ (b) βn greater than βp (c) βn lesser than βp (d) $Lp = 2L$	_n
PART - B (5 x 3= 15 Marks)		
6.	Design a D flip-flop circuit using behavioral level description.	CO2 - App
7.	Sketch a 3 input NAND gate with transistor widths chosen to achieve effective rise and fall resistance equal to that of a unit inverter(R).	CO3 - App
8.	Define power dissipation.	CO1 – U
9.	Design the AND gate using pseudo NMOS logic.	CO3- App
10.	What is Low Power Logic Styles?	CO1 – U

$PART - C (5 \times 16 = 80 \text{ Marks})$

- 11. (a) (i) Design 4 bit input device and write a Verilog code for following CO2-App (8) conditions, it combines 4 bit at a time as a single output according to the selection line inputs.
 - (ii) Write a Verilog program for 3 to 8 decoder in gate level CO2-App (8) description.

Or

- (b) Design a 4-bit adder in which the carry-out of each full adder is the CO2-App (16) carry in of the succeeding next most significant full adder using Verilog HDL.
- 12. (a) Explain the n- well process in CMOS fabrication. CO1 U (16)
 Or
 - (b) Explain the basic structure and operating mode of N-MOS CO1-U (16) Transistor based on the magnitude of Vgs.
- 13. (a) Estimate the minimum delay of the path from A to B in the given CO3-App (16) Figure and choose transistor sizes to achieve this delay. The initial NAND gate may present a load of 8λ of transistor width on the input and the output load is equivalent to 45λ of transistor width. How should be the transistors be sized to achieve least delay?

(b) Determine the relative saturation current of 2- and 3-transistor CO3-App (16) nMOS and pMOS stacks in a 65 nm process. VDD = 1.0 V and Vt = 0.3 V. Use Vc = Ec L = 1.04 V for nMOS devices and 2.22 V for pMOS devices.

14. (a) Two designs for an 8-input domino AND gate using footed CO5-Ana (16) dynamic gates are shown in Figure. One uses four stages of logic with static CMOS inverters. The other uses only two stages by employing a HI-skew NOR gate. Analyze at what range of path electrical efforts are the 2-stage design faster?

Or

- (b) A Multiplexer has a maximum input capacitance of 16 units on CO5-Ana (16) each input it must drive load of 150 units analyze the minimum delay for NAND and Compound solution.
- 15. (a) Explain in detail about variable threshold voltage and multiple CO1 U (16) threshold voltage is infeasible due to technological limitation necessary diagrams.

Oı

(b) Explain the need and demand of low power CMOS logic circuits CO1 – U (16)